Основные методы рентгенологического исследования — рентгеноскопия и рентгенография. Рентгенологическое исследование

Основные методы рентгенологического исследования — рентгеноскопия и рентгенография. Рентгенологическое исследование

Позвоночник человека представляет собой сложный анатомо-функциональный комплекс, состоящий из разнородных по тканевому составу, анатомическому строению и функциям компонентов. Тяжесть заболеваний и повреждений позвоночника, характер их течения, а также выбор методов лечения находятся в прямой зависимости от степени вовлечения в патологический процесс этих компонентов и характера возникающих в них патологических изменений. Вместе с тем естественной рентгеновской контрастностью обладает и, следовательно, отображается на обычных рентгенограммах только один компонент позвоночного столба - позвонки, что обусловливает необходимость применения для развернутой рентгенологической характеристики анатомо-функционального состояния позвоночника, помимо стандартного рентгеноанатомического, ряда специальных методов рентгенологического исследования (прямого и косвенного рентгенофункциональных, искусственного контрастирования и вычислительной рентгенодиагностики).

Основу рентгенологического исследования позвоночника составляет обычная рентгенография. Полный его комплекс включает в себя производство рентгенограмм при исследовании шейного отдела в пяти проекциях, грудного - в четырех и поясничного, так же как и шейного, - в пяти. При исследовании шейного отдела этими проекциями являются: две стандартные, т.е. задняя и боковая, две косые (под углом 45° к сагиттальной плоскости) для выведения суставных щелей межпозвоночных суставов и рентгенограмма "через рот", позволяющая получить изображение в задней проекции двух верхних шейных позвонков, перекрытых на стандартной задней рентгенограмме тенями лицевого черепа и затылочной кости. Исследование грудного отдела позвоночника, помимо стандартных, производится еще и в двух косых проекциях, выполняемых с той же целью, что и при исследовании шейного отдела, однако тело ребенка отклоняется от сагиттальной плоскости под углом не 45°, а 15°. Четыре из пяти проекций, используемых для исследования поясничного отдела позвоночника, аналогичны четырем первым проекциям для исследования шейного отдела. Пятой является боковая, выполняемая при отклонении центрального пучка лучей в каудальном направлении под углом 20-25° с центрацией его на LIV. Рентгенография в этой проекции производится с целью выявления признаков остеохондроза нижнепоясничных межпозвоночных дисков.

Применение всех вышеперечисленных проекций позволяет получить развернутую информацию об особенностях анатомического строения всех отделов позвонков, однако показания к их использованию относительно ограничены, так как рентгенодиагностика большинства наиболее распространенных патологических изменений костных компонентов позвоночного столба у детей может быть обеспечена на основании анализа рентгенограмм, произведенных только в двух стандартных проекциях - задней и боковой.

Интерпретация данных обычной рентгенографии позволяет получить информацию об особенностях пространственного положения позвоночника (или его отделов) во фронтальной и сагиттальной плоскостях и позвонков в горизонтальной, об особенностях формы, размеров, контуров и внутренней структуры позвонков, характере анатомических соотношений между ними, форме и высоте межпозвоночных пространств, а также о величине локального костного возраста позвоночника. Как известно, биологический возраст различных систем человеческого организма не всегда совпадает с паспортным. Наиболее точным показателем возрастного периода формирования костно-суставной системы является степень оссификации костей запястья и эпифизов коротких трубчатых костей кисти. Однако при некоторых заболеваниях того или иного отдела опорно-двигательного аппарата в детском возрасте отмечается изменение темпов его развития по сравнению с темпами развития скелета в целом. Степень выраженности этого изменения является одним из показателей тяжести вызвавшего их патологического процесса

В качестве рентгенологического показателя возрастного периода формирования позвоночника используются стадии оссификации апофизов тел позвонков (Рохлин Д. Г., Финкельштейн М. А., 1956; Дьяченко В. А., 1954). По данным наших исследований, в процессе оссификации этих апофизов могут быть выделены шесть четко различимых между собой стадий, каждая из которых в норме соответствует определенному паспортному возрасту. Несовпадение нормативного возраста выявленной при рентгеноанатомическом исследовании стадии оссификации апофизов тел позвонков с паспортным возрастом ребенка расценивается как показатель нарушения темпов формирования позвоночника, в случае меньшего, чем паспортный, возраста стадии - в сторону замедления, большего - в сторону ускорения.

Дополнительным средством получения информации для стандартного рентгеноанатомического анализа является послойная рентгенография, или, как ее чаще называют, томография, обеспечивающая возможность изучения позвонков по слоям без затрудняющего анализ проекционного наслоения изображений разноудаленных от пленки частей этих позвонков. Основным показанием к применению томографии при заболеваниях позвоночника является необходимость решения вопроса о наличии или отсутствии и характере патологических изменений костной структуры, не выявляющихся на обычных рентгенограммах за тенью реактивного склероза или в силу незначительности их размеров.

Диагностическая ценность томографических данных в значительной мере зависит от правильности выбора проекций для проведения исследования и правильности определения глубины томографических срезов. Мы считаем целесообразным производить послойную рентгенографию позвоночника в боковой проекции по следующим соображениям. В положении больного лежа на боку позвоночник на всем его протяжении располагается параллельно поверхности снимочного стола, что является одним из ведущих условий получения качественного томографического изображения, тогда как в положении лежа на спине из-за наличия физиологических изгибов позвоночника соблюдение этого условия не обеспечивается. Далее, на томограммах, произведенных в боковой проекции, отображаются на одном и том же срезе как передние, так и задние отделы позвонков, причем последние - в наиболее выгодном для анализа виде, что позволяет ограничиваться относительно небольшим количеством срезов. На томограммах же, произведенных в задней проекции, отображаются либо, только тела, либо отдельные части дужек позвонков. Кроме того, исследование в задней проекции исключает возможность использования для определения уровня среза такого удобного анатомического ориентира, как верхушки остистых отростков.

Значимость правильности выбора глубины томографического среза определяется тем, что показания к применению послойной рентгенографии возникают, как правило, при относительно небольших по размеру патологических очагах, вследствие чего ошибка в определении глубины среза на 1 или даже на 0,5 см может привести к непопаданию их изображения на пленку. Использование симультанной кассеты, позволяющей за один пробег томографа получить последовательное изображение нескольких слоев снимаемого объекта при любом заданном расстоянии между слоями, подкупает своей простотой и высокой вероятностью совпадения одного из срезов с расположением участка деструкции. Вместе с тем такой способ томографирования связан с неоправданным расходованием рентгеновских пленок, анализ изображения на большинстве которых не несет диагностической информации, поскольку на них отображаются неизмененные участки позвонков.

Гораздо более оправданной является так называемая избирательная томография, направленная на выделение строго определенного участка тела или дужки позвонка. Расчет глубины среза в случаях, когда участок патологически измененной костной ткани в какой-то мере виден на обычной задней рентгенограмме, производится на основании данных простой рентгенометрии. Измеряется расстояние от патологического очага до основания остистого отростка позвонка, затем после укладки больного измеряется расстояние от поверхности снимочного стола до легко определяемой пальпаторно верхушки остистого отростка подлежащего исследованию позвонка, и к полученной величине добавляется или из нее вычитается величина, равная измеренному по рентгенограмме расстоянию между патологическим очагом и основанием остистого отростка. Сказанное может быть проиллюстрировано на следующем конкретном примере. Педположим, что на обычной рентгенограмме выявлены увеличение размеров и изменение костной структуры правого верхнего суставного отростка одного из грудных позвонков. Величина расстояния между этим суставным отростком и основанием остистого на рентгенограмме равна 1,5 см. Расстояние от поверхности снимочного стола до верхушки остистого отростка исследуемого позвонка, измеренное после укладки больного на бок, равно 12 см. Отсюда глубина среза равна 12-1,5 (если больной лежит на правом боку) и 12+1,5 см (если лежит на левом).

При трудности определения местоположения участка деструкции или других патологических изменений костной ткани на задней рентгенограмме выявление его на томограмме обеспечивается, как правило, выполнением трех томографических срезов: на уровне основания остистого отростка и правого и левого суставных. На первом из названных томографических срезов отображаются остистые отростки на всем их протяжении просвет позвоночного канала и центральные отделы тел позвонков, на двух остальных - соответствующие верхние и нижние суставные отростки и боковые отделы дуг и тел позвонков.

Стандартное рентгейоанатомическое исследование, хотя и обладает достаточно высокими информативными возможностями, не обеспечивает всей полноты диагностики нерезко выраженных патологических состояний межпозвоночных дисков и нарушений функций позвоночного столба. Решение этих вопросов требует применения методов искусственного контрастирования и прямого и косвенного рентгенофункционального исследований.

Искусственное контрастирование межпозвонковых дисков - дискография - нашло применение, в основном, в диагностике и определении тяжести остеохондроза межпозвонковых дисков. В качестве контрастирующих веществ используются йодсодержащие соединения на жировой или водной основе в количестве 0,5-1 см3 на один межпозвоночный диск. Рентгенография позвоночника после контрастирования дисков производится в двух стандартных проекциях. Некоторые авторы рекомендуют, кроме того, выполнять рентгенограммы и в различных функциональных положениях.

В неизмененном или нерезко измененном межпозвонковом диске контрастируется только желатинозное ядро, отображающееся на задних рентгенограммах у взрослых и подростков в виде двух горизонтальных полос, у детей - в виде тени овальной или округлой формы. На боковой рентгенограмме желатинозное ядро межпозвонкового диска у взрослых имеет С-образную форму, у детей -треугольную.

Типичная для выраженного остеохондроза фрагментация межпозвонковых дискоз проявляется на дискограммах затеканием контрастирующего вещества в промежутки между фрагментами фиброзного кольца, а также уменьшением размеров и неправильностью формы желатинозного ядра. Используется дискография и для определения стадий перемещения желатинозного ядра у детей, страдающих структуральным сколи-

При наличии целого ряда диагностических достоинств контрастная дискография в детской клинике имеет ограниченные показания. Прежде всего, прижизненно и вне оперативного вмешательства введение контрастирующего вещества возможно только в диски шейного и средне- и нижнепоясничного отделов позвоночника. (Искусственное контрастирование межпозвонковых дисков грудного отдела исследователями производилось во время операции спондилодеза). Далее, остеохондроз межпозвонковых дисков у детей развивается относительно редко, и, наконец, по данным наших исследований, достоверная информация о состоянии дисков может быть получена на основании более простого в техническом отношении и атравматичного прямого рентгенофункционального исследования.

Информация о состоянии статико-динамических функций опорно-двигательного аппарата средствами рентгенологического исследования достигается двумя путями - на основании анализа на стандартных рентгенограммах деталей анатомического строения костей, отражающих величину функциональных нагрузок, приходящихся на тот или иной отдел костно-суставной системы, и путем рентгенографии суставов или позвоночника в процессе осуществления ими опорной или двигательной функций. Первый из этих способов называется методом косвенного рентгенофункционального исследования, второй - прямого.

Исследование состояния функций позвоночника на основании косвенных показателей включает в себя оценку архитектоники костной структуры и степени минерализации костной ткани. Последняя входит в комплекс косвенного рентгенофункционального исследования на том основании, что изменения ее являются следствием нарушения функций либо самой костной ткани, либо функций опорно-двигательного аппарата в целом. Основным объектом исследований при анализе костной структуры являются так называемые силовые линии, представляющие собой скопления одинаково ориентированных, интенсивных костных пластинок. Одинаково направленные силовые линии группируются в системы, количество и характер которых были описаны в гл. I. Архитектоника костной структуры, как это установлено многими исследователями, является функциональной системой высокой реактивности, оперативно отзывающейся изменением выраженности силовых линий или их переориентацией на любые, даже незначительные, изменения статико-динамических условий.

Наиболее легкая степень нарушения нормальной архитектоники костной структуры тел и дужек позвонков заключается в частичном или полном рассасывании силовых линий в тех отделах, нагрузка на которые уменьшилась, и в усилении их в отделах, испытывающих повышенную нагрузку. Более выраженные биомеханические нарушения, особенно расстройства нервной трофики, сопровождаются так называемым дедифференцированием костной структуры - полным рассасыванием всех силовых линий. Показателем резко выраженных изменений в характере распределения статико-динамических нагрузок в пределах позвоночного столба или одного из его отделов является переориентация силовых линий - вертикальная их направленность в телах позвонков и дугообразная - в дужках сменяется на горизонтальную.

Рутинным рентгеноанатомическим приемом выявления изменений степени минерализации костной ткани является визуальная сравнительная оценка оптических плотностей рентгеновского изображения пораженных и здоровых позвонков. Субъективность и приблизительность данного способа вряд ли требуют особых доказательств. Объективным способом рентгенологической оценки степени минерализации костей является фотоденситометрия, сущность которой заключается в проведении фотометрии оптической плотности рентгеновского изображения позвонков и сравнения полученных показателей с показателями фотометрии эталона нормы. Для обеспечения достоверности фотоденситометрической диагностики остеопороза или остеосклероза эталон нормы должен удовлетворять трем требованиям: 1) оптическая плотность его рентгеновского изображения должна быть соотносима с оптической плотностью рентгеновского изображения позвонков; 2) эталон должен содержать в себе образцы оптической плотности нормальной кости различной толщины (для обеспечения количественной характеристики изменений минеральной насыщенности); 3) эталон должен иметь толщину, позволяющую помещать его во время рентгенографии под мягкие ткани туловища без нарушения этим правильности укладки и причинения неприятных ощущений ребенку. В наибольшей степени удовлетворяют этим условием эталоны из искусственных материалов.

Создание градаций оптической плотности эталона достигается путем придания ему клиновидной или ступенчатой формы. Рентгенограммы позвоночника в случае предполагающегося фотоденситометрического исследования производятся с подкладкой эталона под мягкие ткани поясничной области для обеспечения идентичности условий экспозиции позвонков и эталона и условий проявления рентгеновской пленки. Качественная оценка минерализации костной ткани позвонков производится путем сравнения показателей фотометрии оптической плотности их рентгеновского изображения и рентгеновского изображения участка эталона, содержащего образец оптической плотности нормальной костной ткани той же толщины. При выявлении разности показателей, свидетельствующей об отклонениях от нормы в степени минерализации позвонков, проводится дополнительная фотометрия эталона с целью определения больше или меньше должной оптическая плотность исследуемого позвонка (или позвонков) и какой конкретно толщине нормальной костной ткани она соответствует.

Наиболее удобным видом количественной характеристики изменений минеральной насыщенности позвонков (но не ее абсолютной величины) является выраженное в процентах отношение ее к должной. Толщина тела позвонка, измеренная по рентгенограмме, произведенной в противоположной проекции, принимается за 100%, толщина нормальной кости, которой соответствует оптическая плотность рентгеновского изображения позвонка,- за х %.

Предположим, оптическая плотность тела позвонка на боковой рентгенограмме, имеющего фролтальный размер, равный 5 см, соответствует оптической плотности нормальной кости толщиной 3 см. Составляется следующая пропорция: 5 см - 100%, 3 см - х%

Отсюда степень минеральной насыщенности костной ткани позвонка составляет от должной = 60%

Наиболее технически совершенным средством получения информации о процессе осуществления двигательной функции является кинорентгенография, т.е. киносъемка с экрана рентгеновского изображения движущегося позвоночника. Однако для целей рентгенодиагностики нарушения функций дискосвязочного аппарата позвоночного столба кинорентгенография с успехом может быть заменена обычной рентгенографией, произведенной в нескольких, рационально выбранных фазах движения. Киносъемка, как известно, производится со скоростью 24 кадра в секунду, а при использовании "лупы времени" - с еще большей скоростью. Это означает, что промежуток времени, проходящий между экспозицией двух соседних кадров, равняется минимум,54 с. За столь короткое время соотношения между телами и дужками позвонков не успевают заметно измениться, и на нескольких соседних кадрах получаются практически идентичные изображения. Таким образом, нет необходимости изучать все полученные кадры, достаточно провести анализ только некоторых из них. Более того, количество кадров, необходимых для характеристики двигательной функции, относительно невелико. Кинорентгенография применялась преимущественно с целью определения нормального объема подвижности позвоночника. Полученные при этом данные практически не отличались от данных, полученных авторами, применявшими для той же цели обычную рентгенографию в двух крайних положениях движения позвоночника - сгибания и разгибания или боковых наклонов.

По данным наших исследований, необходимый и достаточный объем информации о состоянии межпозвоночных дисков и двигательной функции позвоночника или его отделов может быть получен на основании анализа рентгенограмм, произведенных в трех функциональных положениях: при физиологической разгрузке, т.е. в положении больного лежа при стандартной укладке, при статической нагрузке, т.е. в положении больного стоя, и в крайних фазах свойственных позвоночнику движений. Выбор проекций для рентгенографии (задняя или боковая), а также количество снимков в третьем функциональном положении (в обоих крайних положениях того или иного движения или только в одном из них) определяются ведущей направленностью исследования (выявление нарушений функций межпозвоночных дисков, нарушения стабилизирующих функций дискосвязочного аппарата, определение объема подвижности позвоночника или его отделов), а также плоскостью максимального проявления -исследуемых патологических изменений.

Обязательным условием выполнения рентгенограмм при проведении прямого рентгенофункционального исследования является соблюдение идентичности кожно-фокусного расстояния, положения фронтальной или сагиттальной плоскости тела больного по отношению к поверхности снимочного стола и идентичности центрации центрального пучка рентгеновских лучей. Необходимость соблюдения этих условий вызвана тем, что интерпретация данных прямого рентгенофункционального исследования включает в себя сравнительный анализ ряда линейных величин и местоположения ряда рентгеноанатомических ориентиров, находящихся в прямой зависимости от условий осуществления рентгенографии.

Рентгенофункциональная диагностика состояния межпозвоночных дисков основывается на оценке их эластических свойств, состояния двигательной и стабилизирующей функций. Оценка первых двух показателей производится путем сравнительного анализа результатов рентгенометрии высоты парных краевых отделов межпозвоночных пространств (правого и левого или переднего и заднего) при различных условиях статико-динамических нагрузок. Состояние стабилизирующей функции определяется на основании анализа соотношений между телами позвонков в различных функциональных положениях.

Показателями нормальных эластических свойств диска являются равномерное увеличение их высоты на рентгенограммах, произведенных в положении больного лежа, по сравнению с высотой на рентгенограммах, произведенных при статической нагрузке, не менее чем на 1 мм и амплитуда колебаний высоты краевых отделов диска от максимального сжатия до максимального расправления (при активных движениях туловища), равная 3-4 мм в грудном отделе позвоночника и 4-5 мм - в поясничном.

Рентгенофункциональным признаком нормальной двигательной функции диска является одинаковая величина увеличения и уменьшения высоты его краевых отделов при переходе тела из одного крайнего положения движения в какой-либо плоскости в другое, или, иными словами, возникновение на рентгенограммах, произведенных, например, при боковых наклонах вправо и влево, клиновидной деформации Дисков, совершенно идентичной по количественным показателям, но противоположной направленности.

Общеизвестно, что, помимо обеспечения движений позвоночника, межпозвонковые Диски обладают также стабилизирующей функцией, полностью исключая смещения тел позвонков относительно друг друга по ширине. Отсюда рентгенофункциональным признаком нарушения стабилизирующей функции диска является стабильное или появляющееся только при движении позвоночника смещение тела одного или нескольких позвонков по отношению к нижележащему. Степень этого смещения ввиду наличия костных ограничителей (почти вертикально расположенных суставных отростков) невелика (не более 2-2,5 мм) и выявляется только при тщательном рентгеноанатомическом анализе.

Каждому из видов патологической перестройки межпозвонковых дисков (остеохондроз, фиброз, дислокация желатинозного ядра, избыточная растяжимость) присущ свой комплекс нарушений функций, что позволяет осуществлять их рентгенодиагностику без применения контрастной дискографии методом прямого рентгенофункционального исследования.

Остеохондроз межпозвонковых дисков

Рентгенофункциональный синдром ранних его стадий складывается из снижения эластичности межпозвонкового диска и одностороннего нарушения двигательной функции, поскольку патологи ческий процесс вначале носит чаще всего сегментарный характер. Под влиянием физиологической разгрузки величина пораженного диска увеличивается на меньшую величину, чем непораженного. На рентгенограммах, произведенных при наклоне тела в сторону, противоположную расположению пораженного сегмента диска (например, вправо при поражении левой части диска), высота этого сегмента увеличивается на меньшую величину, чем симметричного ему, в данном случае правого, при обратной направленности наклона. Выраженный, тотальный остеохондроз проявляется рентгенофункциональными признаками. Помимо отсутствия реакций на физиологическую разгрузку, уменьшенной амплитуды колебаний краевых отделов, выявляются признаки патологической подвижности между телами и суставными отростками позвонков.

Фиброз межпозвонковых дисков

Рентгенофункциональный синдром этого вида патологической перестройки диска складывается из рентгенофункциональн ых признаков резкого снижения эластичности и почти полного отсутствия двигательной функции (форма диска при движениях туловища практически не меняется). Стабилизирующая функция диска сохраняется полностью, что отличает рентгенофункциональный синдром фиброза от рентгенофункциональных проявлений выраженного остехондроза.

Дислокация желатинозного ядра

Процесс перестройки межпозвонкового диска проходит три основные стадии: частичное перемещение желатинозного ядра, характеризующееся вначале незначительным, а затем и выраженным изменением его формы при сохранении нормального расположения; полное перемещение желатинозного ядра из центральных отделов к одному из краев диска; дегенеративно-дистрофическое поражение по типу фиброза или остеохондроза. Частичное перемещение желатинозного ядра характеризуется клиновидностью межпозвонкового пространства на рентгенограмме, произведенной в положении стоя, за счет увеличения по сравнению с должной высоты его на стороне, в которую направлена дислокация ядра. Эластические свойства диска не нарушены. При наклоне тела в сторону основания клина высота этой части диска хотя несколько и уменьшается, но остается больше должной. Двигательная функция противоположной части диска не нарушена, под влиянием наклона высота ее превышает должную.

Полное перемещение желатинозного ядра

Клиновидность диска выражена в большей степени (на рентгенограмме, произведенной при статической нагрузке) и обусловлена не только увеличением высоты его со стороны основания клина, но и уменьшением по сравнению с должной со стороны его вершины. Эластичность отделов диска, расположенных у вершины клина, снижена - при наклоне в сторону основания клина высота сниженных отделов диска увеличивается незначительно и не достигает должной. Реакция на этот наклон расширенной части диска такая же, как и при частичном перемещении желатинозного ядра, однако сопротивление к сжатию выражено в еще большей степени.

Избыточная растяжимость межпозвонковых дисков

Рентгенофункциональный синдром этого вида патологии межпозвонковых дисков складывается из рентгенофункциональных признаков патологической подвижности между телами позвонков, сочетающейся с превышающей нормальные значения амплитудой колебания высоты краевых отделов диска от максимального сжатия до максимального растяжения в крайних фазах того или иного движения позвоночника, что отличает рентгенофункциональный синдром повышенной растяжимости диска от рентгенофункциональных проявлений выраженного остеохондроза.

Объем подвижности позвоночника во фронтальной плоскости определяется по суммарной величине образующихся при наклонах вправо и влево дугообразных искривлений, измеренных по методике Кобба или Фергюссона. Нормальный объем боковой подвижности грудного отдела позвоночника у детей равняется, по данным наших исследований, 20-25° (по 10-12° в каждую сторону), поясничного - 40-50° (по 20-25° вправо и влево).

Объем подвижности в сагиттальной плоскости характеризуется разницей величин грудного кифоза и поясничного лордоза на рентгенограммах, произведенных в крайних положениях сгибания и разгибания позвоночника. Величина его в норме в грудном отделе позвоночника составляет 20-25°, в поясничном - 40°.

Объем ротационной подвижности (при вращении тела впрат во и влево) определяется как сумма углов поворота, измеренных на рентгенограммах, произведенных при повороте тела вокруг вертикальной оси вправо и влево. Нормальный объем этого вида подвижности двигательных сегментов позвоночника равен 30° (по 15° в каждую из сторон).

Нарушения функций мышечно-связочного аппарата позвоночника имеют три основных варианта: нарушение стабилизирующей функции, фиброзное перерождение мышц и связок и нарушение мышечного равновесия.

Рентгенофункциональными признаками нарушения стабилизирующей функции связочного аппарата являются стабильные или возникающие только в процессе осуществления движений нарушения соотношений между телами позвонков и в межпозвонковых суставах. Основная причина патологической подвижности между телами позвонков заключается в нарушении стабилизирующей функции межпозвоночных дисков, но поскольку в ограничении смещений тел позвонков по ширине принимают участие и связки, появление патологической подвижности свидетельствует о нарушении и их функций. Нарушения соотношений в межпозвонковых суставах из-за особенностей пространственного расположения их в грудном отделе позвоночника и вариабельности расположения в поясничном достоверно диагностируются на рентгенограммах, произведенных в стандартных проекциях, только при значительной степени выраженности. Рентгенологическим признаком выраженных подвывихов является соприкосновение верхушки нижнего суставного отростка вышележащего позвонка с верхней поверхностью дуги нижележащего. Выявление более тонких нарушений стабильности межпозвонковых суставов достигается проведением прямого рентгенофункционального исследования в косых проекциях.

Нарушение мышечного равновесия и фиброзное перерождение связок могут быть определе ны средствами прямого рентгенофункционального исследования только на основании учета комплекса показателей. Ведущим рентгенофункциональным признаком этих изменений является ограничение подвижности позвоночника в одной или нескольких плоскостях. Вместе с тем признак этот не является патогномоничным, поскольку объем подвижности позвоночника определяется состоянием функций не только мышц и связок, но и межпозвонковых дисков. Исходя из этого, ограничение подвижности позвоночника или отдельных его сегментов может рассматриваться как рентгенофункциональный показатель мышечно-связочных контрактур только при условии сочетания с рентгенофункциональными признаками нормальной эластичности межпозвонковых дисков.

Мышечно-связочные контрактуры, ограничивая двигательную функцию позвоночника, создают тем самым препятствия для проявления в полной мере эластических свойств дисков, особенно для расправления краевых его отделов при осуществлении движений. Учитывая это обстоятельство, достаточным основанием для заключения об отсутствии выраженной перестройки межпозвонковых дисков по типу фиброза, врожденной гипоплазии или полной дислокации желатинозного ядра являются увеличение их высоты при физиологической нагрузке (по сравнению с высотой на рентгенограммах, произведенных в положении больного стоя) и симметричность сжатия и расправления краевых отделов диска при боковых наклонах или сгибании и разгибании. Остеохондроз межпозвонковых дисков ограничения подвижности не вызывает.

Повреждения и заболевания позвоночника могут оказывать патологическое воздействие на оболочки и корешки спинного мозга, а в отдельных случаях - и на сам спинной мозг вследствие распространения в соответствующем направлении опухолевых масс, образования краевых костных разрастаний при остеохондрозе межпозвонковых дисков, смещения в дорсальном направлении свободных задних полупозвонков или фрагментов поврежденных тел и дужек. Данные о наличии предпосылок для возникновения неврологических расстройств могут быть получены при анализе обычных рентгенограмм на основании определенной направленности краевых костных разрастаний, локального уменьшения расстояния от задней поверхности тел позвонков до основания остистых отростков (на боковой рентгенограмме) или проецирования на фоне спинномозгового канала костных фрагментов, однако достоверное заключение может быть вынесено только на основании интерпретации данных контрастной миелографии или перидурографии.

При производстве миелографии контрастирующее вещество вводится в межоболочечное пространство путем спинномозговой пункции на уровне нижнепоясничных позвонков (после предварительного удаления 5 мл спинномозговой жидкости). При производстве перидурографии контрастное вещество вводят в периоболочечное пространство заднекрестцовым доступом. Каждый из названных способов рентгенологического исследования имеет свои достоинства и недостатки.

Миелография создает хорошие условия для изучения формы и фронтального и сагиттального размеров спинного мозга и тем самым для выявления его сдавлений, смещений внутри позвоночного канала, объемных процессов и т. д. С помощью этого метода достигается контрастирование корешков спинномозговых нервов (Ahu Н., Rosenbaum А., 1981). Вместе с тем процессы, вызывающие раздражающее, а не сдавливающее воздействие на спинной мозг, выявляются на миелограммах менее отчетливо. Кроме того, введение контрастирующего вещества в межоболочечное пространство спинного мозга может вызывать ряд нежелательных побочных явлений (тошноту, головную боль и даже спинальную эпилепсию). Подобные осложнения отмечаются у 22-40% больных (Langlotz М. et al., 1981). Производство миелографии при вертикальном положении тела больного снижает число этих осложнений, но не устраняет их полностью.

Перидурография, наоборот, имеет несомненные преимущества перед миелографией в диагностике задних грыж межпозвонкового диска, нерезко выраженных краевых костных разрастаний, неоссифицированных хрящевых экзостозов, направленных в сторону позвоночного канала или корешков спинных нервов; не дает нежелательных побочных явлений, но значительно менее информативна в отношении состояния спинного мозга.

Выявление в рентгеновском изображении не обладающих естественной контрастностью структур позвоночного канала достигается введением контрастирующих веществ, имеющих как более высокую, так и более низкую молекулярную массу, чем мягкие ткани. Несомненным преимуществом первых из них является обеспечение высокой контрастности получаемого изображения, однако введение необходимого для заполнения межоболочечного или периоболочечного пространства количества "непрозрачного" контрастирующего вещества может привести к перекрыванию его тенью изображения небольших по размерам мягкотканных образований. Введение же малых количеств таит в себе опасность неравномерного распределения контрастного вещества и создания ложного впечатления наличия патологических изменений. Контрастирующие вещества с более низкой молекулярной массой (газы) вследствие их "прозрачности" для рентгеновского излучения не вызывают перекрывания спаек, хрящевых фрагментов; равномерное выполнение контрастируемых пространств происходит при введении даже небольших количеств газа. Недостатком этого способа контрастирования является малая контрастность получаемого изображения.

Количество контрастирующего вещества колеблется в зависимости от возраста ребенка от 5 до 10 мл. Введение его и следующая за этим рентгенография позвоночника производятся на снимочном столе с приподнятым головным концом - при пневмоперидурографии для лучшего распространения газа в краниальном направлении, при применении жидких контрастирующих веществ, оказывающих раздражающее действие на головной мозг - с обратной целью, т.е. с целью депонирования контрастного вещества на ограниченном протяжении.

Рентгенограммы позвоночника после контрастирования спинномозгового канала производятся, как правило, в двух стандартных проекциях - переднезадней и боковой, однако при необходимости рентгенографию выполняют в боковой проекции в положении максимального разгибания позвоночника.

Пневмония рентген требует в обязательном порядке. Без этого вида исследования вылечить человека удастся только чудом. Дело в том, что пневмония может быть вызвана различными возбудителями, которые поддаются только специальной терапии. Рентген помогает определить, подходит ли конкретному больному назначенное лечение. Если ситуация усугубляется, методы терапии корректируются.

Методы исследования рентгеном

Выделяют ряд способов исследования с помощью рентгена, их основное отличие - методика фиксирования полученного изображения:

  1. рентгенография - изображение фиксируется на специальной пленке прямым попаданием на нее рентгеновских лучей;
  2. электрорентгенография - картинка передается на специальные пластины, с которых можно перенести ее на бумагу;
  3. рентгеноскопия - метод, позволяющий получить изображение исследуемого органа на флюоресцентном экране;
  4. рентгенотелевизионное исследование - результат выводится на экран телевизора благодаря персональной теле-системе;
  5. флюорография - изображение получается путем фотографирования выведенной картинки на экран на фотопленку маленького формата;
  6. цифровая рентгенография - графическое изображение передается на цифровой носитель.

Более современные методы рентгенографии позволяют получить более качественное графическое изображение анатомических структур, что способствует более точному диагностированию, а значит, назначению правильного лечения.

Чтобы провести рентген некоторых органов человека используется метод искусственного контрастирования. Для этого исследуемый орган получает дозу специального вещества, поглощающего лучи рентгена.

Виды исследований рентгеном

В медицине показания к рентгенографии состоят в диагностики различных заболеваний, уточнения формы данных органов, места их расположения, состояния слизистых оболочек, перистальтики. Выделяют следующие виды рентгенографии:

  1. позвоночника;
  2. грудной клетки;
  3. периферические отделы скелета;
  4. зубов - ортопантомография;
  5. полости матки - метросальпингография ;
  6. молочной железы - маммография ;
  7. желудка и двенадцатиперстной кишки - дуоденография;
  8. желчного пузыря и желчевыводящих путей - холецистография и холеграфия соответственно;
  9. толстой кишки - ирригоскопия.

Показания и противопоказания к проведению исследования

Рентген может назначаться врачом для визуализации внутренних органов человека с целью установления возможных патологий. Существуют следующие показания к рентгенографии:

  1. необходимость установить поражения внутренних органов и скелета;
  2. проверка корректности установки трубок и катетеров;
  3. контроль эффективности и результативности курса терапии.

Как правило в медицинских заведениях, где сделать рентгенографию можно, пациент опрашивается на предмет возможных противопоказаний процедуры.

К ним относятся:

  1. персональная повышенная чувствительность к йоду;
  2. патология щитовидной железы;
  3. травмы почек или печени;
  4. туберкулез в активной форме;
  5. проблемы кардиологической и кровеносной систем;
  6. повышенное коагулирование крови ;
  7. тяжелое состояние пациента;
  8. состояние беременности.

Преимущества и недостатки способа

Главными достоинствами рентгенологического исследования называют доступность способа и его простоту. Ведь в современном мире есть много учреждений где можно сделать рентген. Это преимущественно не требует какой-либо специальной подготовки, дешевизна и наличие снимков, с которыми можно обратиться за консультацией к нескольким докторам в разных учреждениях.

Минусами рентгена называют получение статичной картинки, облучение, в некоторых случаях требуется введение контраста. Качество снимков иногда, особенно на устаревшем оборудовании, не позволяет эффективно достичь цели исследования. Поэтому рекомендуется искать учреждение, где сделать цифровой рентген, который на сегодня является наиболее современным способом исследования и показывает наивысшую степень информативности.

В случае, если ввиду указанных недостатков рентгенографии, достоверно не будет выявлена потенциальная патология, могут назначаться дополнительные исследования, способные визуализировать работу органа в динамике.

РЕНТГЕНОЛОГИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

Наименование параметра Значение
Тема статьи: РЕНТГЕНОЛОГИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ
Рубрика (тематическая категория) Радио

В диагностике болезней почек и мочевых путей рентгенологические методы играют ключевую роль. Οʜᴎ широко применяются в клинической практике, вместе с тем некоторые из них в связи с внедрением более информативных методов диагностики в настоящее время утратили свое значение (рентгеновская томография, пневморен, пресакральный пневморетроперитонеум, пневмоперицистография, простатография).

Качество рентгенологического исследования во многом зависит от правильной подготовки пациента. Для этого накануне процедуры из рациона обследуемого исключают продукты, способствующие газообразованию (углеводы, овощи, молочные продукты), проводят очистительную клизму. В случае если клизма невозможна, назначают слабительные средства (касторовое масло, форт-ранс), а также препараты, уменьшающие газообразование (активированный уголь, симетикон). Во избежание накопления ʼʼголодныхʼʼ газов утром перед исследованием рекомендуется легкий завтрак (к примеру, чай с небольшим количеством белого хлеба).

Обзорный снимок. Рентгенологическое обследование урологического больного всœегда следует начинать с обзорного снимка почек и мочевыводящих путей. Обзорный снимок мочевых путей должен охватывать область расположения всœех органов мочевой системы (рис. 4.24). Обычно используется рентгеновская пленка размерами 30 х 40 см.

Рис. 4.24. Обзорная рентгенограмма почек и мочевых путей в норме

При интерпретации рентгенограммы, прежде всœего, изучают состояние костного скелœета: нижних грудных и поясничных позвонков, ребер и костей таза. Оценивают контуры m. psoas, исчезновение или изменение которых может свидетельствовать о патологическом процессе в забрюшинном пространстве. Недостаточная видимость объектов забрюшинного пространства должна быть обусловлена метеоризмом, то есть скоплением кишечных газов.

При хорошей подготовке больного на обзорном снимке можно увидеть тени почек, которые располагаются: справа - от верхнего края I поясничного позвонка до тела III поясничного позвонка, слева - от тела XII грудного до тела II поясничного позвонка. В норме их контуры ровные, а тени гомогенные. Изменение размеров, формы, расположения и контуров позволяет заподозрить аномалию или заболевание почек. Мочеточники на обзорной рентгенограмме не видны.

Мочевой пузырь при тугом наполнении концентрированной мочой может определиться в виде округлой тени в проекции тазового кольца.

Камни почек и мочевых путей визуализируются на обзорном снимке в виде рентгеноконтрастных теней (рис. 4.25). Оценивают их локализацию, размеры, форму, количество, плотность. Симулировать конкременты в мочевых путях могут обызвествленные стенки аневризматически расширенных сосудов, атеросклеротические бляшки, камни желчного пузыря, каловые камни, обызвествленные туберкулезные каверны, фиброматозные и лимфатические узлы, а также флеболиты - венные кальцифицированные отложения, имеющие округлую форму и просветление в центре.

Рис. 4.25. Обзорная рентгенограмма почек и мочевыводящих путей. Камни левой почки (стрелка)

Только по обзорной рентгенограмме нельзя с точностью судить о наличии уролитиаза, однако любая тень в проекции почек и мочевыводящих путей должна трактоваться как подозрительная на конкремент, пока с помощью рентгеноконтрастных методов исследования диагноз не будет исключен или подтвержден.

Экскреторная урография - один из ведущих методов исследования в урологии, основанный на способности почек выделять рентгеноконтрастное вещество. Данный метод позволяет оценить функциональное и анатомическое состояние почек, лоханок, мочеточников и мочевого пузыря (рис. 4.26). Обязательным условием для выполнения экскреторной урографии является достаточная функция почек. Для исследования применяют рентгеноконтрастные препараты, содержащие йод (урографин, уротраст и др.). Существуют также современные препараты с низкой осмолярностью (омнипак). Расчет дозы контрастного вещества производится с учетом массы тела, возраста и состояния больного, наличия сопутствующих заболеваний. При удовлетворительной функции почек внутривенно обычно вводят 20 мл контрастного вещества. При крайне важно сти исследование проводят с 40 или 60 мл контраста.

Рис. 4.26. Экскреторная урограмма в норме

После внутривенного введения рентгеноконтрастного вещества, через 1 мин, на рентгенограмме выявляется изображение функционирующей почечной паренхимы (фаза нефрограммы). Через 3 мин контраст определяется в мочевых путях (фаза пиелограммы). Обычно производятся несколько снимков на 7, 15, 25, 40-й минуте, позволяющих оценить состояние верхних мочевых путей. При отсутствии выделœения контрастного вещества почкой делают отсроченные снимки, которые бывают выполнены через 1-2 часа. При заполнении контрастом мочевого пузыря получают его изображение (нисходящая цистограмма).

При интерпретации урограмм обращают внимание на размеры, форму, положение почек, своевременность выделœения контрастного вещества, анатомическое строение чашечно-лоханочной системы, наличие дефектов наполнения и препятствий для пассажа мочи. Следует оценивать насыщенность тени контрастного вещества в мочевыводящих путях, время появления его в мочеточниках и мочевом пузыре. При этом ранее видимая на обзорном снимке тень конкремента может отсутствовать.

На экскреторной урограмме тень рентгенопозитивного камня пропадает вследствие наслоения ее на рентгеноконтрастное вещество. Она появляется на поздних снимках по мере оттока контраста и импрегнации им конкремента. Рентгенонегативный камень создает дефект наполнения контрастного вещества.

При отсутствии на рентгенограмме теней контрастного вещества можно предположить врожденное отсутствие почки, блок почки камнем при почечной колике, гидронефротическую трансформацию и другие заболевания, сопровождающиеся угнетением почечной функции.

Нежелательные реакции и осложнения при внутривенном введении рентеноконтрастных препаратов чаще наблюдаются при использовании гиперосмолярных рентгеноконтрастных веществ, реже - низкоосмолярных. Для профилактики подобных осложнений следует тщательно узнать аллергологический анамнез и с целью проверки чувствительности организма к йоду ввести внутривенно 1-2 мл контрастного вещества, а затем, не удаляя иглу из вены, при удовлетворительном состоянии пациента через 2-3-минутный интервал медленно ввести весь объём препарата.

Введение контрастного вещества должно производиться медленно (в течение 2 мин) в присутствии врача. При возникновении побочных явлений следует тут же медленно ввести в вену 10-20 мл 30% раствора тиосульфата натрия. Незначительными побочными эффектами бывают тошнота͵ рвота͵ головокружение. Гораздо опаснее аллергические реакции на контрастные вещества (крапивница, бронхоспазм, анафилактический шок), которые развиваются примерно в 5 % случаев. При крайне важно сти проведения экскреторной урографии у больных с аллергическими реакциями на гиперосмолярные контрастные препараты применяют только низкоосмолярные вещества и предварительно проводят премедикацию глюкокортикоидами и антигистаминными препаратами.

Противопоказаниями к проведению экскреторной урографии являются шок, коллапс, тяжелые заболевания печени и почек с выраженной азотемией, гипертиреоидизм, сахарный диабет, гипертоническая болезнь в стадии декомпенсации и беременность.

Ретроградная (восходящая) уретеропиелография. Данное исследование основано на заполнении мочеточника, лоханки и чашечек рентгеноконтрастным веществом путем ретроградного введения его через предварительно установленный в мочеточник катетер.
Размещено на реф.рф
Для этой цели используют жидкие контрастные вещества (урографин, омнипак). Газообразные контрасты (кислород, воздух) в настоящее время применяют крайне редко.

Сегодня показания к проведению данного исследования значительно сузились в связи с появлением более информативных и менее инвазивных методов диагностики, таких как сонография, компьютерная томография (КТ) и магнитно-резонансная томография (МРТ).

Ретроградная уретеропиелография (рис. 4.27) используется в случаях, когда экскреторная урография не дает отчетливого изображения верхних мочевыводящих путей или невыполнима из-за выраженной азотемии, аллергических реакций на контрастное вещество. К проведению данного исследования прибегают при сужениях мочеточников различного генеза, туберкулезе, опухолях верхних мочевых путей, рентгенонегативных камнях, аномалиях мочевой системы, а также при крайне важно сти визуализации культи мочеточника удаленной почки. Для выявления рентгенонегативных камней используются растворы контрастного вещества низкой концентрации или пневмопиелография.

Рис. 4.27. Ретроградная уретеропиелограмма слева

Осложнениями ретроградной уретеропиелографии являются развитие пиелоренального рефлюкса, сопровождающегося лихорадкой, ознобом, болью в поясничной области; обострение пиелонефрита; перфорация мочеточника.

Антеградная (нисходящая) пиелоуретерография - метод исследования, основанный на визуализации верхних мочевых путей путем введения контрастного вещества в почечную лоханку с помощью чрескожной пункции либо по нефростомическому дренажу (рис. 4.28).

Ретроградная уретеропиелография противопоказана при массивной гематурии, активном воспалительном процессе в мочеполовых органах, невозможности выполнения цистоскопии.

Проведение ретроградной уретеропиелографии начинается с цистоскопии, после чего в устье соответствующего мочеточника вводят катетер на высоту 20-25 см (или при крайне важно сти в лоханку). Далее делают обзорный снимок мочевых путей для контроля расположения катетера. Медленно вводят рентгеноконтрастное вещество (обычно не более 3-5 мл) и выполняют снимки. Во избежание инфекционных осложнений не следует производить ретроградную уретеропиелографию одновременно с двух сторон.

Антеградная чрескожная пиелоуретерография показана больным с обструкцией мочеточников различного генеза (стриктура, камень, опухоль и др.), когда другие методы диагностики не позволяют установить правильный диагноз. Исследование помогает определить характер и уровень непроходимости мочеточников.

Антеградную пиелоуретерографию используют для оценки состояния верхних мочевыводящих путей у больных с нефростомой в послеоперационном периоде, особенно после пластических операций на лоханке и мочеточнике.

Противопоказаниями к выполнению антеградной чрескожой пиелоуретерографии являются: инфекции кожи и мягких тканей в поясничной области, а также состояния, сопровождающиеся нарушением свертываемости крови.

Рис. 4.28. Антеградная пиелоуретерограмма слева. Стриктура тазового отдела мочеточника

Цистография - метод рентгенологического исследования мочевого пузыря путем предварительного наполнения его контрастным веществом. Цистография должна быть нисходящей (во время экскреторной урографии) и восходящей (ретроградной), которая, в свою очередь, подразделяется на статическую и микционную (во время мочеиспускания).

Нисходящая цистография - это стандартное рентгенологическое исследование мочевого пузыря в процессе выполнения экскреторной урографии (рис. 4.29).

Целœенаправленно она применяется для получения информации о состоянии мочевого пузыря при невозможности его катетеризации из-за непроходимости уретры. При нормальной функции почек отчетливая тень мочевого пузыря появляется через 30-40 мин после введения в кровоток контрастного вещества. В случае если контрастирование недостаточное, производят более поздние снимки, через 60-90 мин.

Рис. 4.29. Экскреторная урограмма с нисходящей цистограммой в норме

Ретроградная цистография - метод рентгеноидентификации мочевого пузыря путем введения в его полость жидких или газообразных (пневмоцистограмма) контрастных веществ по установленному по уретре катетеру (рис. 4.30). Исследование производится в положении больного на спинœе при отведенных и согнутых в тазобедренных суставах бедрах. С помощью катетера в мочевой пузырь вводится 200-250 мл контрастного вещества, после чего выполняется рентгеновский снимок. Нормальный, мочевой пузырь при достаточном наполнении имеет округлую (преимущественно у мужчин) или овальную (у женщин) форму и четкие ровные контуры. Нижний край его тени располагается на уровне верхней границы симфиза, а верхний - на уровне III-IV крестцовых позвонков. У детей мочевой пузырь расположен выше над симфизом, чем у взрослых.

Рис. 4.30. Ретроградная цистограмма в норме

Цистография - основной метод диагностики проникающих разрывов мочевого пузыря, позволяющий определить затеки рентгеноконтрастного вещества за пределы органа (см. гл. 15.3, рис. 15.9). С ее помощью можно также диагностировать цистоцелœе, мочепузырные свищи, опухоли и камни мочевого пузыря. У больных с доброкачественной гиперплазией предстательной желœезы на цистограмме может отчетливо определяться обусловленный ею округлый дефект наполнения по нижнему контуру мочевого пузыря (рис. 4.31). Дивертикулы мочевого пузыря выявляются на цистограмме в виде мешкообразных выпячиваний его стенки.

Рис. 4.31. Экскреторная урограмма с нисходящей цистограммой. Определяется большой округлый дефект наполнения по нижнему контуру мочевого пузыря, обусловленный доброкачественной гиперплазией предстательной желœезы (стрелка)

Противопоказаниями к проведению ретроградной цистографии являются острые воспалительные заболевания нижних мочевых путей, предстательной желœезы и органов мошонки. У больных с травматическим повреждением мочевого пузыря предварительно убеждаются в целостности мочеиспускательного канала путем уретрографии.

Большинство предложенных ранее модификаций цистографий в связи с появлением более информативных методов исследования в настоящее время утратили свое значение. Проверку временем выдержала только микционная цистография (рис. 4.32) - рентгенография, выполняемая во время освобождения мочевого пузыря от контрастного вещества, то есть в момент мочеиспускания. Микционная цистография широко применяется в детской урологии для выявления пузырно-мочеточникового рефлюкса. Также к данному исследованию прибегают при крайне важно сти визуализировать задние отделы мочеиспускательного канала (антеградная уретрография) у больных со стриктурами и клапанами уретры, эктопией устья мочеточника в уретру.


Рис. 4.32. Микционная цистограмма. В момент мочеиспускания контрастируется задняя уретра (1), определяется правосторонний пузырно-мочеточниковый рефлюкс (2)

Генитография - рентгенологическое исследование семявыносящих путей посредством их контрастирования. Используется в диагностике заболеваний придатка яичка (эпидидимография) и семенных пузырьков (везикулография), оценке проходимости семявыносящего протока (вазография).

Исследование заключается во введении рентгеноконтрастного вещества в семявьшосящий проток путем его чрескожной пункции или вазотомии. В связи с инвазивностью данного исследования показания к нему строго ограничены. Генитография используется в дифференциальной диагностике туберкулеза, опухолей придатка яичка, семенных пузырьков. Вазография позволяет выявить причину бесплодия, вызванного нарушением проходимости семявыносящих протоков.

Противопоказанием к выполнению данного исследования является активный воспалительный процесс в органах мочеполовой системы.

Уретрография - метод рентгеновского исследования мочеиспускательного канала путем его предварительного контрастирования. Различают нисходящую (антеградную, микционную) и восходящую (ретроградную) уретрографию.

Антеградную уретрографию выполняют в момент мочеиспускания после предварительного заполнения мочевого пузыря рентгеноконтрастным веществом. При этом получается хорошее изображение простатического и мембраноз-ного отделов мочеиспускательного канала, в связи с этим это исследование применяется прежде всœего для диагностики заболеваний данных отделов уретры.

Значительно чаще выполняют ретроградную уретрографию (рис. 4.33). Ее обычно производят в косом положении больного на спинœе: ротированный таз образует с горизонтальной плоскостью стола угол 45°, одна нога согнута в тазобедренном и коленном суставах и поджата к туловищу, вторая вытянута. В таком положении уретра проецируется на мягкие ткани бедра. Половой член вытягивают параллельно согнутому бедру. Контрастное вещество с помощью шприца с резиновым наконечником медленно (во избежание уретровенозного рефлюкса) вводят в уретру. В процессе введения контраста делают рентгеновский снимок.

Рис. 4.33. Ретроградная уретрограмма в норме

Уретрография - основной метод диагностики повреждений и стриктур мочеиспускательного канала. Характерным рентгенологическим признаком проникающего разрыва уретры является распространение контрастного вещества за ее пределы и отсутствие его поступления в вышелœежащие отделы мочеиспускательного канала и мочевой пузырь (см. гл. 15.4, рис. 15.11). Показанием к ней также являются аномалии, новообразования, девертикулы и свищи мочеиспускательного канала. Уретрография противопоказана при остром воспалении нижних мочевых путей и половых органов.

Почечная ангиография - метод исследования почечных сосудов путем их предварительного контрастирования. С развитием и совершенствованием лучевых методов диагностики ангиография в определœенной степени утратила свое прежнее значение, так как визуализация магистральных сосудов и почек с помощью мультиспиральной КТ и МРТ более доступна, информативна и менее инвазивна.

Метод позволяет изучить особенности ангиоархитектоники и функциональную способность почек в тех случаях, когда другими методами исследования сделать это не удается. Показаниями к проведению данного исследования являются гидронефроз (в особенности при подозрении на наличие вызывающих обструкцию мочеточника нижнеполярных почечных сосудов), аномалии строения почек и верхних мочевых путей, туберкулез, опухоли почки, дифференциальная диагностика объёмных образований и кист почек, нефрогенная артериальная гипертензия, опухоли надпочечников и др.

Учитывая зависимость отспособа введения контрастного вещества почечная ангиография производится транслюмбальным (пункция аорты со стороны поясничной области) и трансфеморальным (после пункции бедренной артерии катетер проводится по ней до уровня почечных артерий) доступом по Seldinger. Сегодня транслюмбальная аортография применяется чрезвычайно редко, только в тех случаях, когда пунктировать бедренную артерию и провести катетер по аорте технически невозможно, к примеру при выраженном атеросклерозе.

Повсœеместное распространение получила трансфеморальная аортография и артериография почек (рис. 4.34).


Рис. 4.34. Трансфеморальная почечная артериограмма

При почечной ангиографии выделяют следующие фазы контрастирования органа: артериографическую - контрастирование аорты и почечных артерий; нефрографическую - визуализацию паренхимы почки; венографическую - определяются почечные вены; фазу экскреторной урографии, когда происходит выделœение контрастного вещества в мочевыводящие пути.

Кровоснабжение почки осуществляется по магистральному или по рассыпному типу. Рассыпной тип кровоснабжения характерен тем, что кровь к почке приносят два и более артериальных ствола. Питая соответствующий участок органа, они не имеют анастомозов, в связи с этим каждый из них является для почки основным источником кровоснабжения. У одного пациента могут наблюдаться сразу оба эти вида кровоснабжения.

В ряде случаев заболевания почек характеризуются специфической ангиографической картиной. При гидронефрозе отмечается резкое сужение внутрипочечных артерий и уменьшение их количества. Для кисты почки характерно наличие бессосудистого участка. Новообразования почки сопровождаются нарушением архитектоники почечных сосудов, односторонним увеличением диаметра почечной артерии, скоплением контрастной жидкости в области опухоли.

Получить подробное изображение интересующего участка позволяет метод селœективной почечной артериографии (рис. 4.35). При этом с помощью трансфеморального зондирования аорты, почечной артерии и её ветвей удается получить избирательную ангиограмму одной почки или ее отдельных сегментов.


Рис. 4.35. Селœективная почечная артериограмма в норме

Почечная ангиография - высокоинформативный метод диагностики различных заболеваний почек. Вместе с тем данное исследование является достаточно инвазивным и должно иметь ограниченные и конкретные показания к применению.

Одним из перспективных методов исследования является цифровая субтракционная ангиография - метод контрастного исследования сосудов с последующей компьютерной обработкой. Преимуществом его является возможность получить изображение только объектов, содержащих контрастный препарат. Последний можно вводить внутривенно, не прибегая к катетеризации крупных сосудов, что менее травматично для пациента.

Венография, в том числе почечная, - метод исследования венозных сосудов путем их предварительного контрастирования. Ее выполняют посредством пункции бедренной вены, через которую проводят катетер в нижнюю полую и почечную вены.

Развитие ангиографии способствовало становлению новой отрасли - рентгенэндоваскулярной хирургии.

В урологии наибольшее распространение получили такие ее методики, как эмболизация, баллонная дилатация и стентирование сосудов.

Эмболизация - введение различных веществ для селœективной окклюзии кровеносных сосудов. Применяется для остановки кровотечения у больных с травмой или опухолями почек и в качестве малоинвазивного метода лечения варикоцелœе. Баллонная ангиопластика и стентирование почечных сосудов подразумевают эндоваскулярное введение специального баллона, который затем раздувается и восстанавливает проходимость сосуда. Важно заметить, что для сохранения вновь приданной артерии формы производят установку специального саморасширяющегося сосудистого эндопротеза - стента.

Компьютерная томография. Это один из наиболее информативных методов диагностики. В отличие от обычной рентгенографии КТ позволяет получить снимок поперечного (аксиального) среза человеческого тела с послойным шагом в 1-10 мм.

Метод основан на измерении и компьютерной обработке разности ослабления рентгеновского излучения различными по плотности тканями. При помощи подвижной рентгеновской трубки, движущейся вокруг объекта под углом 360°, осуществляют аксиальное послойное с миллиметровым шагом сканирование тела пациента. Кроме обычной КТ существует спиральная КТ и более совершенная мультиспиральная КТ (рис. 4.36).


Рис. 4.36. Мультиспиральная КТ в норме. Аксиальный срез на уровне почечных ворот

Для улучшения дифференцировки органов друг от друга используются различные методики усиления с применением перорального или внутривенного контрастирования.

При спиральном сканировании одновременно выполняются два действия: вращение источника излучения - рентгеновской трубки и непрерывное движение стола с пациентом вдоль продольной оси. Наилучшее качество изображения обеспечивает мультиспиральная КТ. Преимуществом мультиспирального исследования является большее количество воспринимающих детекторов, что позволяет получить более качественную картину с возможностью трехмерного изображения исследуемого органа при меньшей лучевой нагрузке на пациента (рис. 4.37). Вместе с тем, данный метод позволяет получить мультипланарные, трехмерные и виртуальные эндоскопические изображения мочевыводящих путей.

Рис. 4.37. Мультиспиральная КТ. Мультипланарная реформация во фронтальной проекции. Экскреторная фаза в норме

КТ является одним из ведущих методов диагностики урологических заболеваний; вследствие более высокой информативности и безопасности по сравнению с другими рентгенологическими методами она получила самое широкое распространение во всœем мире.

Мультиспиральная КТ с внутривенным контрастным усилением и трехмерной реконструкцией изображения в настоящее время является одним из самых совершенных методов визуализации в современной урологии (рис. 36, см. цв. вклейку). Показания к выполнению данного метода исследования в последнее время значительно расширились. Это дифференциальная диагностика кист, новообразований почек и надпочечников; оценка состояния сосудистого русла, регионарных и отдаленных метастазов при опухолях мочеполовой системы; туберкулезное поражение; травмы почек; объёмные образования и гнойные процессы забрюшинного пространства; ретроперитонеальный фиброз; мочекаменная болезнь; заболевания мочевого пузыря (опухоли, дивертикулы, конкременты и т. д.) и предстательной желœезы.

Позитронно-эмиссионная томография (ПЭТ) - радионуклидный томографический метод исследования.

В корне его лежит возможность при помощи специального детектирующего оборудования (ПЭТ-сканера) отслеживать распределœение в организме биологически активных соединœений, меченных позитрон-излучающими радиоизотопами. Наибольшее распространение метод получил в онкоурологии. ПЭТ позволяет получить ценную информацию у больных с подозрением на рак почки, мочевого пузыря, предстательной желœезы, опухоли яичка.

Наиболее информативными являются позитронно-эмиссионные томографы, комбинированные с компьютерными томографами, позволяющие одновременно изучать анатомические (КТ) и функциональные (ПЭТ) данные.

РЕНТГЕНОЛОГИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ - понятие и виды. Классификация и особенности категории "РЕНТГЕНОЛОГИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ" 2017, 2018.

Рентгенологическое исследование I

применяется для изучения строения и функций органов в норме и при патологии. Позволяет диагностировать , определять локализацию и протяженность выявленных патологических изменений, а также их динамику в процессе лечения.

Исследование основано на том, что рентгеновского излучения, проходя через органы и ткани, поглощается ими в неодинаковой степени, что дает возможность получить их изображение на специальном экране или рентгенографической пленке. Разница в оптической плотности соседних участков изображения на рентгенограмме (или разница в яркости свечения флюоресцентного экрана) обусловливает изображения. Многие органы и ткани организма, отличающиеся друг друга плотностью и химическим составом, по-разному поглощают , что обусловливает естественную контрастность получаемого изображения. Благодаря этому Р. и. костей и суставов, легких, сердца и некоторых других органов можно проводить без специальной подготовки. Для исследования желудочно-кишечного тракта, печени, почек, бронхов, сосудов, естественная контрастность которых недостаточна, прибегают к искусственному контрастированию: в вводят специальные безвредные Рентгеноконтрастные средства , поглощающие значительно сильнее (сульфат бария, органические соединения йода) или слабее (газ), чем исследуемая структура. С целью искусственного контрастирования органов и тканей принимают внутрь (например, при Р. и. желудка), вводят в кровеносное русло (например, при урографии), в полости или ткани, окружающие (например, при лигаментографии), или непосредственно в полость (просвет) либо паренхиму органа, (например, при гайморографии, бронхографии, гепатографии). При рентгеноскопии (Рентгеноскопия) интенсивные тени на экране соответствуют плотным органам и тканям, более светлые тени относятся к менее плотным образованиям, содержащим газ, т.е. изображение является позитивным (рис. 1, а ). На рентгенограммах соотношение затемнений и просветлений обратное, т.е. изображение негативное (рис. 1, б ). При описании снимков всегда исходят из соотношения свойственных позитивному изображению, т.е. светлые участки на рентгенограммах называют затемнениями, темные - просветлениями.

Выбор оптимального метода зависит от диагностической задачи в каждом конкретном случае. к Р. и. определяются состоянием больного и спецификой конкретного метода Р. и. (например, противопоказана при острых воспалительных заболеваниях дыхательных путей).

Рентгенологическое исследование проводят в рентгеновских кабинетах. При обследовании лиц, находящихся в тяжелом состоянии (например, шоке или повреждениях, требующих неотложных вмешательств), Р. и. проводят непосредственно в реанимационном отделении или в операционной с помощью палатных или перевязочных рентгеновских установок. По показаниям возможно обследование больных в перевязочных, приемных отделениях, больничных палатах и др.

Исследование в зависимости от направления пучка рентгеновского излучения по отношению к плоскости тела проводят в основном в прямой, боковой и косых проекциях. При прямой проекции (рис. 2, а, б ) направлен сагиттально, т.е. перпендикулярно фронтальной плоскости тела. При передней прямой (дорсовентральной) проекции источник излучения расположен позади исследуемого, а или пленка прилежат к передней поверхности тела, при задней прямой (вентродорсальной) проекции расположение источника и приемника излучения обратное. При боковой проекции (левой или правой) центральный луч проходит перпендикулярно сагиттальной плоско тела, т. е. вдоль его фронтальной плоскости (рис. 2, в, г ). Косые проекции характеризуется направлением центрального луча под углом к фронтальной и сагиттальной плоскостям (рис. 2, д, е, ж, з ). Существует четыре косых проекции - правая и левая передние и правая и левая задние. В ряде случаев при Р. и. приходится использовать дополнительные проекции, получаемые путем вращения пациента вокруг одной оси (чаще продольной). Такое исследование называют многопроекционным. Если этого бывает недостаточно, больного поворачивают также и вокруг других осей (см. Полипозиционное исследование). При исследовании ряда анатомических образований, например глазницы, среднего уха, используют специальные проекции - осевые (центральный луч направлен вдоль оси органа), тангенциальные (центральный луч направлен по касательной к поверхности органа) и др.

Рентгенологическое исследование начинается, как правило, с рентгеноскопии (Рентгеноскопия) или рентгенографии (Рентгенография). С помощью рентгеноскопии исследуют двигательную функцию некоторых внутренних органов (сердца, желудка, кишечника и др.), определяют смещаемость патологических образований при пальпации или изменении положения пациента и др. , обладающая высокой разрешающей способностью, дает возможность более отчетливо и рельефно отобразить структуры организма.

Рентгеноскопия и составляют группу общих рентгенологических методов. Они также лежат в основе частных и специальных рентгенологических методов, основанных на применении особых приемов и технических средств, к которым прибегают с целью получения дополнительной информации о функции и структуре исследуемого органа. К частным методам относятся , Телерентгенография и Электрорентгенография , Томография, Флюорография и др. Для регистрации движений органов (например, сердца, легких, диафрагмы) применяют рентгеноскопию с использованием видеомагнитной записи изображения. Специальные методы (Бронхография , Холеграфия, Урография, Ангиография и др.) предназначены для изучения определенной системы, органа или его части, обычно после искусственного контрастирования. Применяют их по строгим показаниям лишь в тех случаях, когда более простые методы не обеспечивают необходимых диагностических результатов.

Иногда необходима предварительная подготовка пациента, обеспечивающая качество Р. и., уменьшающая связанные с исследованием неприятные ощущения, предупреждающая развитие осложнений. Так, перед проведением Р. и. толстой кишки назначают , очистительные ; в случае необходимости проведения при Р. и. пункции сосуда или протока применяют местную анестезию; перед введением некоторых рентгеноконтрастных веществ назначают гипосенсибилизирующие препараты; для более четкого выявления в ходе исследования функционального состояния органа можно использовать различные лекарственные препараты (стимулирующие перистальтику желудочно-кишечного тракта, уменьшающие сфинктеров и др.).

Анализ полученной при Р. и. информации слагается из нескольких последовательных этапов: выделения рентгенологических симптомов, истолкования рентгенологической картины, сопоставления рентгенологических данных с результатами клинических и проводившихся ранее рентгенологических исследований, дифференциального диагноза и формулирования окончательного заключения.

Осложнения, связанные с применением Р. и., наблюдаются редко. Они в основном возникают при искусственном контрастировании полостей, органов и систем организма и проявляются аллергическими реакциями, острым расстройством дыхания, коллапсом, рефлекторными нарушениями сердечной деятельности, эмболиями, повреждениями органов и тканей. Подавляющее большинство осложнений развивается в процессе проведения исследования или в первые 30 мин после его окончания. Осложнения в виде лучевых повреждений (Лучевые повреждения) при строгом соблюдении всех правил противолучевой защиты (Противолучевая защита) не наблюдаются. Они могут возникнуть лишь при грубом нарушении правил работы с источниками ионизирующего излучения (эксплуатация неисправной аппаратуры, нарушение методики исследования, отказ от применения средств индивидуальной защиты и др.). Защита от излучения больных и персонала достигается правильной планировкой рентгеновского кабинета, ограничением поля облучения размерами исследуемой области и экранированием зоны расположения половых органов, использованием дополнительной фильтрации первичного пучка излучения и средств индивидуальной защиты и др.

Рентгенологическое исследование детей. Основным методом Р. и. детей, особенно новорожденных, является рентгенография. Она сопровождается меньшей лучевой нагрузкой на пациента и в то же время позволяет получить достаточно полную и объективную информацию об исследуемом органе. При исследовании детей более старшего возраста рентгенографию дополняют рентгеноскопией, при этом предпочтение отдают рентгенотелевизионному исследованию, позволяющему снизить лучевую нагрузку. Большую часть специальных исследований у детей провести не представляется возможным. Для фиксации детей раннего возраста во время исследования в оптимальном положении пользуются соответствующими приспособлениями и устройствами. Области тела, не подлежащие исследованию, экранируют просвинцованной резиной или защитной ширмой. Массовые флюорографические исследования детей в возрасте до 12 лет запрещаются.

Библиогр.: Зедгенидзе Г.А. и Осипкова Т.А. Неотложная у детей, Л., 1980, библиогр.; Кишковский А.Н. и Тютин Л.А. Методика и техника электрорентгенографии, М., 1982; Линденбратен Л.Д. и Наумов Л.Б. Методы рентгенологического исследования органов и систем человека, Ташкент, 1976.

Рентгеновское изображение кисти в норме: позитивное изображение, наблюдаемое при рентгеноскопии (более плотным тканям соответствуют более темные участки изображения)">

Рис. 1а). Рентгеновское изображение кисти в норме: позитивное изображение, наблюдаемое при рентгеноскопии (более плотным тканям соответствуют более темные участки изображения).

Рис. 2. Стандартные рентгенологические проекции: а - передняя прямая; б - задняя прямая; в - левая боковая; г - правая боковая; д - правая передняя косая; е - левая передняя косая; ж - правая задняя косая; з - левая задняя косая; 1 - источник рентгеновского излучения; 2 - поперечный срез тела исследуемого; 3 - позвоночник; 4 - приемник излучения; Ф - фронтальная плоскость, пунктиром обозначен центральный луч пучка излучения.

II Рентгенологи́ческое иссле́дование

в медицине - исследование морфологических и функциональных особенностей органов и систем человека, в т.ч. с целью диагностики болезней, основанное на получении и анализе рентгеновских изображений соответствующих участков тела.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Рентгенологическое исследование" в других словарях:

    Рентгенологическое исследование - 25. Рентгенологическое исследование использование рентгеновского излучения для обследования пациента в целях диагностики и/или профилактики заболеваний, состоящее из одной или нескольких рентгенологических процедур. Источник … Словарь-справочник терминов нормативно-технической документации

    рентгенологическое исследование

    Изучение рентгеновского снимка. Рентгенология раздел радиологии, изучающий воздействие на организм человека рентгеновского излучения, возникающие от этого заболевания и патологические состояния, их лечение и профилактику, а также методы… … Википедия

    рентгенологическое исследование органов грудной клетки - rus рентгенологическое исследование (с) органов грудной клетки eng chest radiography fra radiographie (f) thoracique deu Thoraxröntgen (n), Thoraxröntgenaufnahme (f) spa radiografía (f) torácica … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

    Исследование морфологических и функциональных особенностей органов и систем человека, в т. ч. с целью диагностики болезней, основанное на получении и анализе рентгеновских изображений соответствующих участков тела … Большой медицинский словарь

    См. Томография … Большой медицинский словарь

    I Полипозиционное исследование (греч. poly много + лат. positio установка, положение) метод рентгенологического исследования, при котором, изменяя положение тела больного, получают оптимальные проекции исследуемого органа. При перемене положения… … Медицинская энциклопедия

    рентгеновское исследование - rus рентгеновское исследование (с), рентгенографическое исследование (с); рентгенологическое исследование (с) eng X ray examination, radiological examination fra examen (m) radiologique deu Röntgenuntersuchung (f) spa examen (m) con rayos X,… … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

Важной составной частью функционального анализа зубов, челюстей и ВНЧС является рентгенография. К рентгенологическим методам исследования относятся внутриротовая дентальная рентгенография, а также ряд методов внеротовой рентгенографии: панорамная рентгенография, ортопантомография, томография ВНЧС и телерентгенография.

На панорамной рентгенограмме видно изображение одной челюсти, на ортопантомограмме — обеих челюстей.

Телерентгенографию (рентгенография на расстоянии) применяют для изучения строения лицевого скелета. При рентгенографии ВНЧС используют методы Парма, Шюллера, а также томографию. Обзорные рентгенограммы малопригодны для функционального анализа: на них не видна суставная щель на всем протяжении, имеются проекционные искажения, наложения окружающих костных тканей.

Томография височно-нижнечелюстного сустава

Несомненные преимущества перед вышеназванными методами имеет томография (сагиттальная, фронтальная и аксиальная проекции), позволяющая видеть суставную щель, форму суставных поверхностей. Однако томография является срезом в одной плоскости и при этом исследовании невозможно оценить в целом положение и форму наружного и внутреннего полюсов головок ВНЧС.

Нечеткость суставных поверхностей на томограммах обусловлена наличием тени смазанных слоев. В области латерального полюса - это массив скуловой дуги, в области медиального полюса - каменистая часть височной кости. Томограмма бывает более четкой, если имеется срез в середине головки, а наибольшие изменения при патологии наблюдаются у полюсов головок.
На томограммах в сагиттальной проекции мы видим комбинацию смещения головок в вертикальной, горизонтальной и сагиттальной плоскостях. Например сужение суставной щели, обнаруживаемое на сагиттальной томограмме, может быть в результате смещения головки наружу, а не вверх, как принято считать; расширение суставной щели - смещение головки внутрь (медиально), а не только вниз (рис. 3.29, а).

Рис. 3.29. Сагиттальные томограммы ВНЧС и схема для их оценки. А - топография элементов ВНЧС справа (а) и слева (б) при смыкании челюстей в положении центральной (1), правой боковой (2) окклюзии и при открытом рте (3) в норме. Видна щель между костными элементами сустава - место для суставного диска; Б - схема для анализа сагиттальных томограмм: а - угол наклона заднего ската суставного бугорка к основной линии; 1 - переднесуставная щель; 2 - верхнесуставная щель; 3 - заднесустав-ная щель; 4 - высота суставного бугорка.

Расширение суставной щели на одной стороне и сужение ее на другой считают признаком смещения нижней челюсти в сторону, где суставная щель уже .

Внутренние и наружные отделы сустава определяются на фронтальных томограммах. Ввиду асимметрии расположения ВНЧС в пространстве лицевого черепа справа и слева на одной фронтальной томограмме не всегда удается получить изображение сустава с обеих сторон. Томограммы в аксиальной проекции применяют редко из-за сложной укладки пациента. В зависимости от задач исследования применяют томографию элементов ВНЧС в боковых проекциях в следующих положениях нижней челюсти: при максимальном смыкании челюстей; при максимальном открывании рта; в положении физиологического покоя нижней челюсти; в «привычной окклюзии».

При томографии в боковой проекции на томографе «Неодиагно-макс» укладывают больного на снимочный стол на живот, голову поворачивают в профиль таким образом, чтобы исследуемый сустав прилегал к кассете с пленкой. Сагиттальная плоскость черепа должна быть параллельна плоскости стола. При этом чаще всего используют глубину среза 2,5 см.

На томограммах ВНЧС в сагиттальной проекции при смыкании челюстей в положении центральной окклюзии в норме суставные головки занимают центрическое положение в суставных ямках. Контуры суставных поверхностей не изменены. Суставная щель в переднем, верхнем и заднем отделах симметрична справа и слева.

Средние размеры суставной щели (мм):

В переднем отделе - 2,2±0,5;
в верхнем отделе - 3,5±0,4;
в заднем отделе - 3,7+0,3.

На томограммах ВНЧС в сагиттальной проекции при открытом рте суставные головки располагаются против нижней трети суставных ямок или против вершин суставных бугров.

Для создания параллельности сагиттальной плоскости головы и плоскости стола томографа, неподвижности головы во время томографии и сохранения этого же положения при повторных исследованиях используют краниостат.

На томограммах в боковой проекции измеряют ширину отдельных участков суставной щели по методике И.И. Ужумецкене (рис. 3.29, б): оценивают размеры и симметричность суставных головок, высоту и наклон заднего ската суставных бугорков, амплитуду смещения суставных головок при переходе из положения центральной окклюзии в положение открытого рта.
Особый интерес представляет метод рентгенокинематографии ВНЧС. С помощью этого метода возможно изучение движения суставных головок в динамике [Петросов Ю.А., 1982].

Компьютерная томография

Компьютерная томография (КТ) позволяет получать прижизненные изображения тканевых структур на основании изучения степени поглощения рентгеновского излучения в исследуемой области. Принцип метода заключается в том, что исследуемый объект послойно просвечивается рентгеновским лучом в различных направлениях при движении рентгеновской трубки вокруг него. Непоглощенная часть излучения регистрируется с помощью специальных детекторов, сигналы от которых поступают в вычислительную систему (ЭВМ). После математической обработки полученных сигналов на ЭВМ строится изображение исследуемого слоя («среза») на матрице.

Высокая чувствительность метода КТ к изменениям рентгеновской плотности изучаемых тканей обусловлена тем, что получаемое изображение в отличие от обычного рентгеновского не искажается наложением изображений других структур, через которые проходит рентгеновский пучок. В то же время лучевая нагрузка на больного при КТ-исследовании ВНЧС не превышает таковую при обычной рентгенографии. По данным литературы, использование КТ и сочетание ее с другими дополнительными методами позволяют осуществить наиболее прецизионную диагностику, снизить лучевую нагрузку и решать те вопросы, которые решаются с трудом или совсем не решаются с помощью послойной рентгенографии.

Оценку степени поглощения излучения (рентгеновской плотности тканей) производят по относительной шкале коэффициентов поглощения (КП) рентгеновского излучения. В данной шкале за 0 ед. Н (Н - единица Хаунсфилда) принято поглощение в воде, за 1000 ед. Н. - в воздухе. Современные томографы позволяют улавливать различия плотностей в 4-5 ед. Н. На компьютерных томограммах более плотные участки, имеющие высокие значения КП, представляются светлыми, а менее плотные, имеющие низкие значения КП, темными.

С помощью современных компьютерных томографов III и IV поколений можно выделить слои толщиной 1,5 мм с моментальным воспроизведением изображения в черно-белом или цветном варианте, а также получить трехмерное реконструированное изображение исследуемой области. Метод позволяет бесконечно долго сохранять полученные томограммы на магнитных носителях и в любое время повторить их анализ посредством традиционных программ, заложенных в ЭВМ компьютерного томографа.

Преимущества КТ в диагностике патологии ВНЧС:

Полное воссоздание формы костных суставных поверхностей во всех плоскостях на основе аксиальных проекций (реконструктивное изображение);
обеспечение идентичности съемки ВНЧС справа и слева;
отсутствие наложений и проекционных искажений;
возможность изучения суставного диска и жевательных мышц;
воспроизведение изображения в любое время;
возможность измерения толщины суставных тканей и мышц и оценки ее с двух сторон.

Применение КТ для исследования ВНЧС и жевательных мышц впервые разработано в 1981 г. A.Hiils в диссертации, посвященной клинико-рентгенологическим исследованиям при функциональных нарушениях зубочелюстно-лицевой системы.

Основные показания к использованию КТ: переломы суставного отростка, краниофациальные врожденные аномалии, боковые смещения нижней челюсти, дегенеративные и воспалительные заболевания ВНЧС, опухоли ВНЧС, упорные суставные боли неясного генеза, неподдающиеся консервативной терапии.

КТ позволяет полностью воссоздать формы костных суставных поверхностей во всех плоскостях, не вызывает наложения изображений других структур и проекционных искажений [Хватова В.А., Корниенко В.И., 1991; Паутов И.Ю., 1995; Хватова В.А., 1996; Вязьмин А.Я., 1999; Westesson P., Brooks S., 1992, и др.]. Применение этого метода эффективно как для диагностики, так и дифференциальной диагностики органических изменений ВНЧС, не диагностируемых клинически. Решающее значение при этом имеет возможность оценки суставной головки в нескольких проекциях (прямые и реконструктивные срезы).

При дисфункции ВНЧС КТ-исследование в аксиальной проекции дает дополнительную информацию о состоянии костных тканей, положении продольных осей суставных головок, выявляет гипертрофию жевательных мышц (рис. 3.30).

КТ в сагиттальной проекции позволяет дифференцировать дисфункцию ВНЧС от других поражений сустава: травм, новообразований, воспалительных нарушений [Регtes R., Gross Sh., 1995, и др.].

На рис. 3.31 представлены КТ ВНЧС в сагиттальной проекции справа и слева и схемы к ним. Визуализировано нормальное положение суставных дисков.

Приводим пример использования КТ для диагностики заболевания ВНЧС.

Больная М ., 22 лет, обратилась с жалобами на боль и суставные щелчки справа при жевании в течение 6 лет. Во время обследования выявлено: при открывании рта нижняя челюсть смещается вправо, а затем зигзагообразно со щелчком влево, болезненная пальпация наружной крыловидной мышцы слева. Прикус ортогнатический с небольшим резцовым перекрытием, интактные зубные ряды, жевательные зубы справа стерты больше, чем слева; правосторонний тип жевания. При анализе функциональной окклюзии в полости рта и на моделях челюстей, установленных в артикулятор, выявлен балансирующий суперконтакт на дистальных скатах небного бугорка верхнего первого моляра (задержка стирания) и щечного бугорка второго нижнего моляра справа. На томограмме в сагиттальной проекции изменений не обнаружено. На КТ ВНЧС в той же проекции в положении центральной окклюзии смещение правой суставной головки назад, сужение заднесуставной щели, смещение вперед и деформация суставного диска (рис. 3.32, а). На КТ ВНЧС в аксиальной проекции толщина наружной крыловидной мышцы справа 13,8 мм, слева - 16,4 мм (рис. 3.32, б).

Диагноз: балансирующий суперконтакт небного бугорка 16 и щечного бугорка в левой боковой окклюзии,правосторонний тип жевания, гипертрофия наружной крыловидной мышцы слева, асимметрия размеров и положения суставных головок, мышечно-суставная дисфункция, дислокация кпереди диска ВНЧС справа, смещение суставной головки кзади.

Телерентгенография

Использование телерентгенографии в стоматологии позволило получать снимки с четкими контурами мягких и твердых структур лицевого скелета, проводить их метрический анализ и тем самым уточнять диагноз [Ужумецкене И.И., 1970; Трезубов В.Н., Фадеев Р.А., 1999, и др.].

Принцип метода заключается в получении рентгеновского снимка при большом фокусном расстоянии (1,5 м). При получении снимка с такого расстояния, с одной стороны, снижается лучевая нагрузка на пациента, с другой, уменьшается искажение лицевых структур. Применение цефалоста-тов обеспечивает получение идентичных снимков при повторных исследованиях.

Телерентгенограмма (ТРГ) в прямой проекции позволяет диагностировать аномалии зубочелюстной системы в трансверсальном направлении, в боковой проекции - в сагиттальном направлении. На ТРГ отображаются кости лицевого и мозгового черепа, контуры мягких тканей, что дает возможность изучить их соответствие. ТРГ используют как важный диагностический метод в ортодонтии, ортопедической стоматологии, челюстно-лице-вой ортопедии, ортогнатической хирургии. Применение ТРГ позволяет:
проводить диагностику различных заболеваний, в том числе аномалий и деформаций лицевого скелета;
планировать лечение этих заболеваний;
прогнозировать предполагаемые результаты лечения;
осуществлять контроль за ходом лечения;
объективно оценивать отдаленные результаты.

Так, при протезировании больных с деформациями окклюзионной поверхности зубных рядов использование ТРГ в боковой проекции дает возможность определить искомую протетическую плоскость, а следовательно, решить вопрос о степени сошлифовывания твердых тканей зубов и необходимости их девитализации.

При полном отсутствии зубов на телерентгенограмме можно на этапе постановки зубов проверить правильность нахождения окклюзионной поверхности.

Рентгеноцефалометрический анализ лица у пациентов с повышенной стираемостью зубов позволяет более точно дифференцировать форму данного заболевания, выбрать оптимальную тактику ортопедического лечения. Кроме того, оценив ТРГ, можно также получить информацию о степени атрофии альвеолярных частей верхней и нижней челюстей и определить конструкцию протеза.
Для расшифровки ТРГ снимок закрепляют на экране негатоскопа, прикрепляют к нему кальку, на которую переносят изображение.

Существует много методов анализа ТРГ в боковых проекциях. Одним из них является метод Шварца, основанный на использовании в качестве ориентира плоскости основания черепа. При этом можно определить:

Расположение челюстей по отношению к плоскости передней части основания черепа;
расположение ВНЧС по отношению к этой плоскости;
длину переднего основания че
репной ямки.

Анализ ТРГ - важный метод диагностики зубочелюстных аномалий, позволяющий выявить причины их формирования.

С помощью компьютерных средств можно не только повысить точность анализа ТРГ, сэкономить время их расшифровки, но и прогнозировать предполагаемые результаты лечения.

В.А.Хватова
Клиническая гнатология