Понятие об ускорении. Движение с постоянным ускорением по прямой линии

Понятие об ускорении. Движение с постоянным ускорением по прямой линии

На данном уроке, тема которого: «Уравнение движения с постоянным ускорением. Поступательное движение», мы вспомним, что такое движение, каким оно бывает. Также вспомним, что такое ускорение, рассмотрим уравнение движения с постоянным ускорением и как им пользоваться для определения координаты движущегося тела. Рассмотрим пример задачи для закрепления материала.

Главная задача кинематики - определить положение тела в любой момент времени. Тело может покоиться, тогда его положение меняться не будет (см. рис. 1).

Рис. 1. Покоящееся тело

Тело может двигаться прямолинейно с постоянной скоростью. Тогда его перемещение будет изменяться равномерно, то есть одинаково за равные промежутки времени (см. рис. 2).

Рис. 2. Перемещение тела при движении с постоянной скоростью

Перемещение , скорость, умноженная на время, это мы давно умеем делать. Тело может двигаться с постоянным ускорением, рассмотрим такой случай (см. рис. 3).

Рис. 3. Движение тела с постоянным ускорением

Ускорение

Ускорение - это изменение скорости за единицу времени (см. рис. 4):

Рис. 4. Ускорение

Скорость - векторная величина, поэтому и изменение скорости, т. е. разность векторов конечной и начальной скорости, является вектором. Ускорение - тоже вектор, направленный туда же, куда и вектор разности скоростей (см. рис. 5).

Мы рассматриваем прямолинейное движение, поэтому можно выбрать координатную ось вдоль прямой, вдоль которой происходит движение, и рассматривать проекции векторов скорости и ускорения на эту ось:

Тогда равномерно изменяется его скорость: (если его начальная скорость была равна нулю). Как теперь найти перемещение? Скорость умножить на время - нельзя : скорость постоянно менялась; какую брать? Как определить, где при таком движении будет находиться тело в любой момент времени - сегодня мы эту проблему решим.

Сразу определимся с моделью: мы рассматриваем прямолинейное поступательное движение тела. В таком случае можем применять модель материальной точки. Ускорение направлено вдоль той же прямой, вдоль которой материальная точка движется (см. рис. 6).

Поступательное движение

Поступательное движение - это такое движение, при котором все точки тела движутся одинаково: с одинаковой скоростью, совершая одинаковое перемещение (см. рис. 7).

Рис. 7. Поступательное движение

А как еще может быть? Взмахните рукой и проследите: понятно, что ладонь и плечо двигались по-разному. Посмотрите на колесо обозрения: точки вблизи оси почти не движутся, а кабинки движутся с другой скоростью и по другим траекториям (см. рис. 8).

Рис. 8. Движение выбранных точек на колесе обозрения

Посмотрите на движущийся автомобиль: если не учитывать вращение колес и движение частей мотора, все точки автомобиля движутся одинаково, движение автомобиля считаем поступательным (см. рис. 9).

Рис. 9. Движение автомобиля

Тогда нет смысла описывать движение каждой точки, можно описать движение одной. Автомобиль считаем материальной точкой. Обратите внимание, что при поступательном движении линия, соединяющая любые две точки тела при движении, остается параллельной сама себе (см. рис. 10).

Рис. 10. Положение линии, соединяющей две точки

Автомобиль ехал прямолинейно в течение часа. В начале часа его скорость была 10 км/ч, а в конце - 100 км/ч (см. рис. 11).

Рис. 11. Рисунок к задаче

Скорость изменялась равномерно. Сколько километров проехал автомобиль?

Проанализируем условие задачи.

Скорость автомобиля изменялась равномерно, то есть всё время пути его ускорение было постоянным. Ускорение по определению равно:

Автомобиль ехал прямолинейно, поэтому мы можем рассматривать его движение в проекции на одну ось координат:

Найдем перемещение.

Пример возрастающей скорости

На стол кладут орехи, по одному ореху в минуту. Понятно: сколько минут пройдет, столько орехов на столе окажется. А теперь представим, что скорость накладывания орехов равномерно возрастает с нуля: первую минуту орехов не кладут, во вторую кладут один орех, потом два, три и так далее. Сколько орехов окажется на столе через какое-то время? Понятно, что меньше, чем если бы максимальная скорость поддерживалась всегда. Причем хорошо видно, что меньше в 2 раза (см. рис. 12).

Рис. 12. Количество орехов при разной их скорости выкладывании

Так же и с равноускоренным движением: допустим, сначала скорость была равна нулю, в конце стала равна (см. рис. 13).

Рис. 13. Изменение скорости

Если бы тело постоянно двигалось с такой скоростью, его перемещение было бы равно , но поскольку скорость равномерно возрастала - то в 2 раза меньше.

Мы умеем находить перемещение при РАВНОМЕРНОМ движении: . Как обойти эту проблему? Если скорость изменяется не на много, то движение можно приближенно считать равномерным. Изменение скорости будет небольшим за небольшой интервал времени (см. рис. 14).

Рис. 14. Изменение скорости

Поэтому разобьем время в пути T на N небольших отрезков длительностью (см. рис. 15).

Рис. 15. Разбиение отрезка времени

Подсчитаем перемещение на каждом отрезке времени. Скорость прирастает на каждом интервале на:

На каждом отрезке мы будем считать движение равномерным и скорость приближенно равной начальной скорости на данном отрезке времени. Посмотрим, не приведет ли к ошибке наше приближение, если на небольшом промежутке движение будем считать равномерным. Максимальная ошибка будет равна:

и суммарная ошибка за всё время пути -> . При больших N принимаем ошибка близка к нулю. Это мы увидим и на графике (см. рис. 16): на каждом интервале будет ошибка, но суммарная ошибка при достаточно большом количестве интервалов будет пренебрежимо мала.

Рис. 16. Ошибка на интервалах

Итак, каждое следующее значение скорости на одну и ту же величину больше предыдущего. Из алгебры мы знаем, что это арифметическая прогрессия с разностью прогрессии :

Путь на участках (при равномерном прямолинейном движении (см. рис. 17) равен:


Рис. 17. Рассмотрение участков движения тела

На втором участке:

На n-м участке путь равен:

Арифметическая прогрессия

Арифметической прогрессией называется такая числовая последовательность, в которой каждое следующее число отличается от предыдущего на одну и ту же величину. Арифметическая прогрессия задается двумя параметрами: начальный член прогрессии и разность прогрессии . Тогда последовательность записывается так:

Сумма первых членов арифметической прогрессии вычисляется по формуле:

Просуммируем все пути. Это будет сумма первых N членов арифметической прогрессии:

Т. к. мы разбили движение на много интервалов, то можно считать, что , тогда:

У нас было множество формул, и, чтобы не запутаться, мы не писали каждый раз индексы х, но рассматривали всё в проекции на координатную ось.

Итак, мы получили главную формулу равноускоренного движения: перемещение при равноускоренном движении за время T, которую мы наряду с определением ускорения (изменение скорости за единицу времени) будем использовать для решения задач:

Мы занимались решением задачи об автомобиле. Подставим в решение числа и получим ответ: автомобиль проехал 55,4 км.

Математическая часть решения задачи

С перемещением мы разобрались. А как определить координату тела в любой момент времени?

По определению перемещение тела за время - это вектор, начало которого находится в начальной точке движения, а конец - в конечной точке, в которой тело будет через время . Нам нужно найти координату тела, поэтому запишем выражение для проекции перемещения на ось координат (см. рис. 18):

Рис. 18. Проекция перемещения

Выразим координату :

То есть координата тела в момент времени равна начальной координате плюс проекция перемещения, которое совершило тело за время . Проекцию перемещения при равноускоренном движении мы уже нашли, осталось подставить и записать:

Это и есть уравнение движения с постоянным ускорением. Оно позволяет узнать координату движущейся материальной точки в любой момент времени. Понятно, что момент времени мы выбираем в пределах промежутка, когда работает модель: ускорение постоянное, движение прямолинейное.

Почему уравнение движения нельзя применять для нахождения пути

В каких случаях мы можем считать перемещение по модулю равным пути? Когда тело движется вдоль прямой и не меняет направления. Например, при равномерном прямолинейном движении мы не всегда четко оговариваем, путь мы находим или перемещение, всё равно они совпадают.

При равноускоренном движении скорость изменяется. Если скорость и ускорение направлены в противоположные стороны (см. рис. 19), то модуль скорости убывает, и в какой-то момент он станет равен нулю и скорость поменяет направление, то есть тело начнет двигаться в противоположную сторону.

Рис. 19. Модуль скорости убывает

И тогда, если в данный момент времени тело находится на расстоянии 3 м от начала наблюдения, то его перемещение равно 3 м, но если тело сначала прошло 5 м, затем развернулось и прошло еще 2 м, то путь будет равен 7 м. И как же его найти, если не знать этих чисел? Просто надо найти момент, когда скорость равна нулю, то есть когда тело развернется, и найти путь к этой точке и от нее (см. рис. 20).

Рис. 20. Момент, когда скорость равна 0

Список литературы

  1. Соколович Ю.А., Богданова Г.С Физика: Справочник с примерами решения задач. - 2-е издание передел. - X.: Веста: Издательство «Ранок», 2005. - 464 с.
  2. Ландсберг Г.С. Элементарный учебник физики; т.1. Механика. Теплота. Молекулярная физика - М.: Издательство «Наука», 1985.
  1. Интернет портал «kaf-fiz-1586.narod.ru» ()
  2. Интернет портал «Учеба - Легко» ()
  3. Интернет портал «Гипермаркет знаний» ()

Домашнее задание

  1. Что такое арифметическая прогрессия?
  2. Какое движение называется поступательным?
  3. Чем характеризуется векторная величина?
  4. Запишите формулу для ускорения через изменение скорости.
  5. Какой вид имеет уравнение движения с постоянным ускорением?
  6. Вектор ускорения направлен в сторону движения тела. Как будет изменять свою скорость тело?
Урок 4. Ускорение. Скорость при движении с постоянным ускорением.

Цель : сформулировать признаки движения тела с постоянным ускорением.

План : 1) Организационный момент. Актуализация знаний. Проверка домашнего задания.

3) Закрепление изученного. Итог урока. Задание и объяснение домашней работы. Решение задач

Ход урока:

1)Организационный момент. Актуализация знаний.

Вопросы

    При равномерном прямолинейном движении мгновенная скорость совпадает со средней скоростью. Почему?

    Почему при равномерном прямолинейном движении за любые равные промежутки времени тело перемещается на одно и то же расстояние.

    Как по графику зависимости скорости от времени определяют перемещение тела при равномерном прямолинейном движении?

    Как угол наклона графика равномерного прямолинейного движения зависит от скорости?

2) Изучение нового материала.

Сегодня на уроке мы узнаем: физический смысл ускорения, графики движения с постоянным ускорением.


При движении тел их скорости обычно меняются либо по модулю, либо по направлению, либо одновременно и по модулю, и по направлению.

Пример 1 (видеофрагмент)


Пример 2 (видеофрагмент)


Пример 3 (видеофрагмент)


Величину, характеризующую быстроту изменения скорости, называют ускорением.

Ускорением тела называется предел отношения изменения скорости к промежутку времени , в течение которого это изменение произошло, при стремлении к нулю.

В Международной системе (СИ) за единицу ускорения принимают ускорение такого равнопеременного движения, при котором скорость движущегося тела за 1 с изменяется на 1 . Эту единицу называют 1 метр на секунду в квадрате и обозначают 1


Исследование ускоренного и замедленного движения шарика (интерактивная модель).

Равноускоренное движение (тело разгоняется), если , а = const.

При замедленном движении (тело тормозит), если , а = const.


Исследование графика скорости равноускоренного движения (интерактивная модель)


Задание 1. Заполнить таблицу.

Графики скорости будут отображать зависимость скорости от времени.

Проекции скорости. При вычислении ускорения используются проекции векторов скорости и ускорения на ось Х 3) Закрепление изученного. Итог урока. Задание и объяснение домашней работы.

Домашняя работа. §11, 12, 13, вопросы, упражнение 3(1,2)


1. Велосипедист, едущий со скоростью 18 км/ч, начинает спускаться с горы. Определить скорость велосипедиста через 6 с, если ускорение равно 0,8 м/с 2 .


2. Поезд через 20 с после начала движения приобретает скорость 90 м/с. Через сколько времени от начала движения скорость поезда станет равна 3 м/с?


3. Скорость автомобиля за 10 с уменьшилась с 10 до 6 м/с. Написать формулу зависимости V (t) скорости от времени, построить график этой зависимости и по графику определить скорость через 20 с.


4. Как направлено ускорение лифта, когда он:

а) начинает двигаться с первого этажа?

б) тормозит на верхнем этаже?

в) тормозит на третьем этаже, двигаясь вниз?

г) начинает движение на третьем этаже, двигаясь вверх?

Движение лифта при разгоне и торможении считайте равноускоренным.


5. Зависимость проекции скорости от времени для первого тела выражается в единицах СИ формулой , а для второго – формулой .

а) Изобразите графики для каждого тела.

б) В какой момент скорости тел равны (по модулю и направлению)?

в) В какие моменты скорости тел равны по модулю?

План-конспект урока по теме «Скорость при прямолинейном движении с постоянным ускорением»

Дата :

Тема: «Скорость при прямолинейном движении с постоянным ускорением»

Цели:

Образовательная : Обеспечить и сформировать осознанное усвоение знаний о скорости при прямолинейном движении с постоянным ускорением;

Развивающая : Продолжить развитие навыков самостоятельной деятельности, навыков работы в группах.

Воспитательная : Формировать познавательный интерес к новым знаниям; воспитывать дисциплину поведения.

Тип урока: урок усвоения новых знаний

Оборудование и источники информации:

    Исаченкова, Л. А. Физика: учеб. для 9 кл. учреждений общ. сред. образования с рус. яз. обучения / Л. А. Исаченкова, Г. В. Пальчик, А. А. Сокольский; под ред. А. А. Сокольского. Минск: Народная асвета, 2015

    Исаченкова, Л. А. Сборник задач по физике. 9 класс: пособие для учащихся учреждений общ. сред. образования с рус. яз. обучения / Л. А. Исаченкова, Г. В. Пальчик, В. В. Дорофейчик. Минск: Аверсэв, 2016, 2017.

Структура урока:

    Организационный момент(5 мин)

    Актуализация опорных знаний(5мин)

    Изучение нового материала (15 мин)

    Физкультминутка (2 мин)

    Закрепление знаний (13мин)

    Итоги урока(5 мин)

    Организационный момент

Здравствуйте, садитесь! (Проверка присутствующих). Сегодня на уроке мы должны разобраться со скоростью при прямолинейном движении с постоянным ускорением. А это значит, что Тема урока : Скорость при прямолинейном движении с постоянным ускорением

    Актуализация опорных знаний

Самое простое из всех неравномерных движении - прямолинейное движение с постоянным ускорением. Его называют равнопеременным.

Как изменяется скорость тела при равнопеременном движении?

    Изучение нового материала

Рассмотрим движение стального шарика по наклонному желобу. Опыт показывает, что его ускорение практически постоянно:

Пусть в момент времени t = 0 шарик имел начальную скорость (рис. 83).

Как найти зависимость скорости шарика от времени?

Ускорение шарика а = . В нашем примере Δt = t , Δ - . Значит,

, откуда

При движении с постоянным ускорением скорость тела линейно зависит от времени.

Из равенств (1 ) и (2) следуют формулы для проекций:

Построим графики зависимости a x ( t ) и v x ( t ) (рис. 84, а, б).

Рис. 84

Согласно рисунку 83 а х = а > 0, = v 0 > 0.

Тогда зависимости a x ( t ) соответствует график 1 (см. рис. 84, а). Это прямая, параллельная оси времени. Зависимости v x ( t ) соответствует график , описывающий возрастание проекции ско рости (см. рис. 84, б). Понятно, что растет и модуль скорости. Шарик движется равноускоренно.

Рассмотрим второй пример (рис. 85). Теперь начальная скорость шарика направлена вдоль желоба вверх. Двигаясь вверх, шарик будет постепенно терять скорость. В точке А он на мгновение остановится и начнет скатываться вниз. Точку A называют точкой поворота.

Согласно рисунку 85 а х = - а < 0, = v 0 > 0, и формулам (3) и (4) соответствуют графики 2 и 2" (см. рис. 84, а , б).

График 2" показывает, что вначале, пока шарик двигался вверх, проекция скорости v x была положительна. Она уменьшалась и в момент времени t = стала равной нулю. В этот момент шарик достиг точки поворота A (см. рис. 85). В данной точке направление скорости шарика изменилось на противоположное и при t > проекция скорости стала отрицательной.

Из графика 2" (см. рис. 84, б) видно также, что до момента поворота модуль скорости уменьшался - шарик двигался вверх равнозамедленно. При t > t n модуль скорости растет - шарик движется вниз равноускоренно.

Постройте самостоятельно графики зависимости модуля скорости от времени для обоих примеров.

Какие еще закономерности равнопеременного движения необходимо знать?

В § 8 мы доказали, что для равномерного прямолинейного движения площадь фигуры между графиком v x и осью времени (см. рис. 57) численно равна проекции перемещения Δ r х . Можно доказать, что это правило применимо и для неравномерного движения. Тогда согласно рисунку 86 проекция перемещения Δ r х при равнопеременном движении определяется площадью трапеции ABCD . Эта площадь равна полусумме оснований трапеции умноженной на ее высоту AD .

В результате:

Так как среднее значение проекции скорости формулы (5)

следует:

При движении с постоянным ускорением соотношение (6) выполняется не только для проекции, но и для векторов скорости:

Средняя скорость движения с постоянным ускорением равна полусумме начальной и конечной скоростей.

Формулы (5), (6) и (7) нельзя использовать для движения с непостоянным ускорением. Это может привести к грубым ошибкам.

    Закрепление знаний

Разберем пример решения задачи со страницы 57:

Автомобиль двигался со скоростью, модуль которой = 72 . Увидев красный свет светофора, водитель на участке пути s = 50 м равномерно снизил скорость до = 18 . Определите характер движения автомобиля. Найдите направление и модуль ускорения, с которым двигался автомобиль при торможении.

Дано: Реше ние:

72 = 20 Движение автомобиля было равнозамедленным. Уско-

рение автомобиля направлено противоположно

18 = 5 скорости его движения.

Модуль ускорения:

s = 50 м

Время торможения:

а - ? Δ t =

Тогда

Ответ:

    Итоги урока

    При движении с постоянным ускорением скорость линейно зависит от времени.

    При равноускоренном движении направления мгновенной скорости и ускорения совпадают, при равнозамедленном - они противоположны.

    Средняя скорость движения с постоянным ускорением равна полусумме начальной и конечной скоростей.

Организация домашнего задания

§ 12, упр. 7 № 1, 5

Рефлексия.

Продолжите фразы:

    Сегодня на уроке я узнал…

    Было интересно…

    Знания, которые я получил на уроке, пригодятся

Движение. Теплота Китайгородский Александр Исаакович

Прямолинейное движение с постоянным ускорением

Такое движение возникает, согласно закону Ньютона, тогда, когда в сумме на тело действует постоянная сила, подгоняющая или тормозящая тело.

Хотя и не вполне точно, такие условия возникают довольно часто: тормозится под действием примерно постоянной силы трения автомашина, идущая с выключенным мотором, падает с высоты под действием постоянной силы тяжести увесистый предмет.

Зная величину результирующей силы, а также массу тела, мы найдем по формуле a = F /m величину ускорения. Так как

где t – время движения, v – конечная, а v 0 – начальная скорость, то при помощи этой формулы можно ответить на ряд вопросов такого, например, характера: через сколько времени остановится поезд, если известна сила торможения, масса поезда и начальная скорость? До какой скорости разгонится автомашина, если известна сила мотора, сила сопротивления, масса машины и время разгона?

Часто нам бывает интересно знать длину пути, пройденного телом в равномерно-ускоренном движении. Если движение равномерное, то пройденный путь находится умножением скорости движения на время движения. Если движение равномерно-ускоренное, то подсчет величины пройденного пути производится так, как если бы тело двигалось то же время t равномерно со скоростью, равной полусумме начальной и конечной скоростей:

Итак, при равномерно-ускоренном (или замедленном) движении путь, пройденный телом, равен произведению полусуммы начальной и конечной скоростей на время движения. Такой же путь был бы пройден за то же время при равномерном движении со скоростью (1/2)(v 0 + v ). В этом смысле про (1/2)(v 0 + v ) можно сказать, что это средняя скорость равномерно-ускоренного движения.

Полезно составить формулу, которая показывала бы зависимость пройденного пути от ускорения. Подставляя v = v 0 + at в последнюю формулу, находим:

или, если движение происходит без начальной скорости,

Если за одну секунду тело прошло 5 м, то за две секунды оно пройдет (4?5) м, за три секунды – (9?5) м и т.д. Пройденный путь возрастает пропорционально квадрату времени.

По этому закону падает с высоты тяжелое тело. Ускорение при свободном падении равно g , и формула приобретает такой вид:

если t подставить в секундах.

Если бы тело могло падать без помех каких-нибудь 100 секунд, то оно прошло бы с начала падения громадный путь – около 50 км. При этом за первые 10 секунд будет пройдено всего лишь (1/2) км – вот что значит ускоренное движение.

Но какую же скорость разовьет тело при падении с заданной высоты? Для ответа на этот вопрос нам понадобятся формулы, связывающие пройденный путь с ускорением и скоростью. Подставляя в S = (1/2)(v 0 + v )t значение времени движения t = (v ? v 0)/a , получим:

или, если начальная скорость равна нулю,

Десять метров – это высота небольшого двух- или трехэтажного дома. Почему опасно прыгнуть на Землю с крыши такого дома? Простой расчет показывает, что скорость свободного падения достигнет значения v = sqrt(2·9,8·10) м/с = 14 м/с? 50 км/ч, а ведь это городская скорость автомашины.

Сопротивление воздуха не намного уменьшит эту скорость.

Выведенные нами формулы применяются для самых различных расчетов. Применим их, чтобы посмотреть, как происходит движение на Луне.

В романе Уэллса «Первые люди на Луне» рассказывается о неожиданностях, испытанных путешественниками в их фантастических прогулках. На Луне ускорение тяжести примерно в 6 раз меньше земного. Если на Земле падающее тело проходит за первую секунду 5 м, то на Луне оно «проплывет» вниз всего лишь 80 см (ускорение равно примерно 1,6 м/с 2).

Прыжок с высоты h длится время t = sqrt(2h /g ). Так как лунное ускорение в 6 раз меньше земного, то на Луне для прыжка понадобится в sqrt(6) ? 2,45 раз больше времени. Во сколько же раз уменьшается конечная скорость прыжка (v = sqrt(2gh ))?

На Луне можно безопасно прыгнуть с крыши трехэтажного дома. В шесть раз возрастает высота прыжка, cделанного с той же начальной скоростью (формула h = v 2 /(2g )). Прыжок, превышающий земной рекорд, будет под силу ребенку.

Из книги Физика: Парадоксальная механика в вопросах и ответах автора Гулиа Нурбей Владимирович

4. Движение и сила

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Теория Вселенной автора Этэрнус

Из книги Занимательно об астрономии автора Томилин Анатолий Николаевич

9. Движение Луны Луна обращается вокруг Земли с периодом в 27 дней 7 часов 43 минуты и 11,5 секунды. Этот период называется звездным, или сидерическим, месяцем. Точно с таким же периодом обращается Луна и вокруг собственной оси. Поэтому понятно, что к нам постоянно обращена

Из книги Эволюция физики автора Эйнштейн Альберт

Эфир и движение Принцип относительности Галилея справедлив для механических явлений. Во всех инерциальных системах, движущихся относительно друг друга, применимы одни и те же законы механики. Справедлив ли этот принцип и для немеханических явлений, особенно тех, для

Из книги Физика на каждом шагу автора Перельман Яков Исидорович

Движение по кругу Раскройте зонтик, уприте его концом в пол, закружите и бросьте внутрь мячик, скомканную бумагу, носовой платок – вообще что-нибудь легкое и неломкое. Произойдет нечто для вас неожиданное. Зонтик словно не пожелает принять подарка: мяч или бумажный ком

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Движение относительно Закон инерции приводит нас к выводу о множественности инерциальных систем.Не одна, а множество систем отсчета исключают «беспричинные» движения.Если одна такая система найдена, то сразу же найдется и другая, движущаяся поступательно (без

Из книги Системы мира (от древних до Ньютона) автора Гурев Григорий Абрамович

Движение по окружности Если точка движется по окружности, то движение является ускоренным, уже хотя бы потому, что в каждый момент времени скорость меняет свое направление. По величине скорость может оставаться неизменной, и мы остановим внимание именно на подобном

Из книги 1. Современная наука о природе, законы механики автора Фейнман Ричард Филлипс

Реактивное движение Человек движется, отталкиваясь от земли; лодка плывет потому, что гребцы отталкиваются веслами от воды; теплоход также отталкивается от воды, только не веслами, а винтами. Также отталкиваются от земли и поезд, идущий по рельсам, и автомашина, –

Из книги Фарадей. Электромагнитная индукция [Наука высокого напряжения] автора Кастильо Сержио Рарра

VI. Движение твердых тел Момент силы Попробуйте рукой привести во вращение тяжелое маховое колесо. Тяните за спицу. Вам будет тяжело, если вы ухватитесь рукой слишком близко к оси. Переместите руку к ободу, и дело пойдет легче.Что же изменилось? Ведь сила в обоих случаях

Из книги автора

Как выглядит тепловое движение Взаимодействие между молекулами может иметь большее или меньшее значение в «жизни» молекул.Три состояния вещества – газообразное, жидкое и твердое – различаются одно от другого той ролью, которую в них играет взаимодействие

Из книги автора

ПРЕВРАТИТЬ ЭЛЕКТРИЧЕСТВО В ДВИЖЕНИЕ Фарадей заметил в опытах Эрстеда одну маленькую деталь, которая, как казалось, содержала ключ к пониманию проблемы.Он догадался, что магнетизм электрического тока всегда отклоняет стрелку компаса в одну сторону. Например, если